簡易檢索 / 詳目顯示

研究生: 陳邦旭
Chen, Bang-Shiuh
論文名稱: 利用熱超常材料操縱熱傳導之設計與模擬
Design and Simulation of Thermal Metamaterial for Manipulating Heat Conduction
指導教授: 陳聯文
Chen, Lien-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 60
中文關鍵詞: 隱形斗篷熱傳導聲子晶體超常材料
外文關鍵詞: cloaking, heat conduction, phononic crystal, metamaterial
相關次數: 點閱:142下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一般自然界的材料無法有效的控制熱傳導的方向,本研究將轉換光學之數學方法應用於控制熱傳導,並利用熱超常材料之模擬實現新穎的熱元件。
    本文首先分析了文獻所提出之熱傳導隱形斗篷(簡稱熱斗篷),並指出其設計上之限制以及實現上的困難,因而提出了兩種新的方法,第一種為地毯式熱斗篷,地毯式熱斗篷可使用層狀的超常材料實現,本研究選取由矽層和矽聲子晶體層所構成之超常材料。由有限元素軟體Comsol Multiphysics模擬可知當熱絕緣體放置在地毯式熱隱形斗篷下時即有良好的熱隱形效果。此外,地毯式熱斗篷也可使不規則表面的溫度均勻化。而因為其簡單的材料參數,使得地毯式熱斗篷較易實現。第二個方法為利用熱電阻網絡概念設計網狀熱斗篷。與實心的多層熱斗蓬不同,網格狀熱斗篷由離散熱傳導組件所構成。而斗篷之熱隱形效能可透過有限元素軟體Comsol Multiphysics模擬,並與多層熱斗篷比較。此外,根據模擬,可找出不同離散組件的數目、尺寸和熱傳導率之最佳設計。本研究之模擬結果表明,所提出的網格狀熱斗篷不僅實現了比多層熱斗篷更好的熱隱形效果,同時也擁有較小的物理尺寸、較便宜的成本和更多設計通用性。
    另一方面,本文也將其他的轉換熱元件-熱集中器,以有限元素軟體Comsol Multiphysics模擬,並以實際之材料設計。總括來說,本文對於熱傳導之操縱提供了可行方案,而可應用於微電子、國防和綠色能源等領域。

    Using natural material cannot effectively manipulates the directional distribution of heat conduction. Accordingly, this study applies the mathematics method of transformation optics in controlling the heat transfer. In addition, a thermal metamaterial simulation is used to realize the novel thermal devices.
    First, the present study analyzes the invisibility cloak of thermal conductivity (thermal cloak) proposed by former research. The former thermal cloak has a lot of limitations on design, and is not easily achieved. Therefore, two new methods for thermal conduction cloaking are proposed. In the first method, a thermal carpet cloak is proposed theoretically using a layered metamaterial, which is composed of homogeneous silicon layer and a phononic crystal silicon layer. The thermal cloaking effect is demonstrated using COMSOL Multiphysics Finite Element software. Great cloaking performance is achieved when a thermal insulator is well hidden under the thermal carpet cloak. In addition, the thermal carpet cloak can homogenize the temperature on irregular surface. Thermal carpet cloak can be easily realize because of its simple material composition. The second method design a mesh-like thermal conductivity cloak by means of thermal resistance network simulations. Compared to the solid multi-layered cloaks, the proposed cloak comprises a mesh-like array of discrete conductance components. The thermal shielding performance of the proposed cloak is compared with that of a layered cloak by means of COMSOL Multiphysics Finite Element software. In addition, simulations are performed to determine the optimal design of the mesh-like web in terms of the number, dimensions and conductivity of the discrete conductance components. In general, the results presented in this study show that the proposed mesh-like cloak not only achieves a better thermal shielding effect than a layered cloak, but also has a smaller physical size, a cheaper cost, and a greater design versatility.
    On the other hand, other transformed thermal devise, thermal concentrator, is also designed and simulated using COMSOL Multiphysics Finite Element software. As a result, it provides a promising solution for various thermal manipulating applications in the microelectronics, national defense, green energy field etc..

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 符號表 IX 第一章 緒論 1 1-1 前言 1 1-2 轉換光學與熱傳導學 2 1-3 聲子與熱傳導系數 5 1-4 熱阻網絡概念與電流隱形裝置 6 1-5 研究目標與方法 7 第二章 基礎理論與分析 8 2-1 物理規律的協變形式 8 2-2 傳導方程式之不變性 10 2-3 熱傳導隱形斗篷 12 2-4 暫態熱傳導隱形斗篷 16 2-5 晶格熱傳導之物理模型 18 第三章 地毯式熱隱形斗篷之設計 21 3-1 物理模型之數學分析 21 3-2 熱隱形斗篷之裝置實例與模擬 26 3-3 小結 34 第四章 網狀熱隱形斗篷之設計 35 4-1 物理模型之數學分析 35 4-2 熱隱形斗篷之裝置實例與模擬 38 4-3 小結 42 第五章 熱集中器之設計 43 5-1 傳統的熱集中器 43 5-2 物理模型之數學分析 45 5-3 熱集中器之裝置實例與模擬 48 第六章 結論與未來展望 53 參考文獻 54 附錄A張量Lemma之證明 57 附錄B Holland所使用之鬆弛時間公式及預測結果 58 附錄C平面波展開法於聲子晶體之應用 60

    [1] J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science, vol. 312, no. 5781, pp. 1780–1782, Jun. 2006.
    [2] U. Leonhardt, “Optical Conformal Mapping,” Science, vol. 312, no. 5781, pp. 1777–1780, Jun. 2006.
    [3] M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photonics Nanostructures - Fundam. Appl., vol. 6, no. 1, pp. 87–95, Apr. 2008.
    [4] H. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett., vol. 90, no. 24, pp. 241105–241105–3, Jun. 2007.
    [5] S. A. Cummer and D. Schurig, “One path to acoustic cloaking,” New J. Phys., vol. 9, no. 3, p. 45, Mar. 2007.
    [6] S. Zhang, D. A. Genov, C. Sun, and X. Zhang, “Cloaking of Matter Waves,” Phys. Rev. Lett., vol. 100, no. 12, p. 123002, Mar. 2008.
    [7] G. W. Milton, M. Briane, and J. R. Willis, “On cloaking for elasticity and physical equations with a transformation invariant form,” New J. Phys., vol. 8, no. 10, p. 248, Oct. 2006.
    [8] Y. A. Urzhumov and D. R. Smith, “Fluid Flow Control with Transformation Media,” Phys. Rev. Lett., vol. 107, no. 7, p. 074501, Aug. 2011.
    [9] T. Chen, C.-N. Weng, and J.-S. Chen, “Cloak for curvilinearly anisotropic media in conduction,” Appl. Phys. Lett., vol. 93, no. 11, pp. 114103–114103–3, Sep. 2008.
    [10] S. Guenneau, C. Amra, and D. Veynante, “Transformation thermodynamics: cloaking and concentrating heat flux,” Opt. Express, vol. 20, no. 7, pp. 8207–8218, Mar. 2012.
    [11] S. Narayana and Y. Sato, “Heat Flux Manipulation with Engineered Thermal Materials,” Phys. Rev. Lett., vol. 108, no. 21, p. 214303, May 2012.
    [12] R. J. Turton, The Physics of Solids. OUP Oxford, 2000.
    [13] J. Callaway, “Model for Lattice Thermal Conductivity at Low Temperatures,” Phys. Rev., vol. 113, no. 4, pp. 1046–1051, Feb. 1959.
    [14] M. G. Holland, “Analysis of Lattice Thermal Conductivity,” Phys. Rev., vol. 132, no. 6, pp. 2461–2471, Dec. 1963.
    [15] P. E. Hopkins, P. T. Rakich, R. H. Olsson, I. F. El-kady, and L. M. Phinney, “Origin of reduction in phonon thermal conductivity of microporous solids,” Appl. Phys. Lett., vol. 95, no. 16, pp. 161902–161902–3, Oct. 2009.
    [16] D. Song and G. Chen, “Thermal conductivity of periodic microporous silicon films,” Appl. Phys. Lett., vol. 84, no. 5, pp. 687–689, Feb. 2004.
    [17] P. E. Hopkins, C. M. Reinke, M. F. Su, R. H. Olsson, E. A. Shaner, Z. C. Leseman, J. R. Serrano, L. M. Phinney, and I. El-Kady, “Reduction in the Thermal Conductivity of Single Crystalline Silicon by Phononic Crystal Patterning,” Nano Lett., vol. 11, no. 1, pp. 107–112, Jan. 2011.
    [18] C. M. Reinke, M. F. Su, B. L. Davis, B. Kim, M. I. Hussein, Z. C. Leseman, R. H. Olsson-III, and I. El-Kady, “Thermal conductivity prediction of nanoscale phononic crystal slabs using a hybrid lattice dynamics-continuum mechanics technique,” Aip Adv., vol. 1, no. 4, pp. 041403–041403–14, Dec. 2011.
    [19] Y. A. Engel, Heat and Mass Transfer: A Practical Approach, 3rd ed. McGraw-Hill, 2006.
    [20] F. Yang, Z. L. Mei, T. Y. Jin, and T. J. Cui, “dc Electric Invisibility Cloak,” Phys. Rev. Lett., vol. 109, no. 5, p. 053902, Aug. 2012.
    [21] Z. L. Mei, Y. S. Liu, F. Yang, and T. J. Cui, “A dc carpet cloak based on resistor networks,” Opt. Express, vol. 20, no. 23, pp. 25758–25765, Nov. 2012.
    [22] W. Xiang Jiang, C. Yang Luo, Z. Lei Mei, and T. Jun Cui, “An ultrathin but nearly perfect direct current electric cloak,” Appl. Phys. Lett., vol. 102, no. 1, pp. 014102–014102–5, Jan. 2013.
    [23] 蔡佳年,轉換光學之波導設計,國立成功大學碩士論文,2010。
    [24] G. W. Milton, The Theory of Composites. Cambridge University Press, 2002.
    [25] W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett., vol. 91, no. 11, pp. 111105–111105–3, Sep. 2007.
    [26] Y. Huang, Y. Feng, and T. Jiang, “Electromagnetic cloaking by layered structure ofhomogeneous isotropic materials,” Opt. Express, vol. 15, no. 18, pp. 11133–11141, Sep. 2007.
    [27] M. Yan, Z. Ruan, and M. Qiu, “Scattering characteristics of simplified cylindrical invisibility cloaks,” Opt. Express, vol. 15, no. 26, pp. 17772–17782, Dec. 2007.
    [28] “Umklapp scattering,” Wikipedia, the free encyclopedia. 27-Feb-2013.
    [29] G. C. D. of M. E. MIT, Nanoscale Energy Transport and Conversion : A Parallel Treatment of Electrons, Molecules, Phonons, and Photons: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons. Oxford University Press, 2005.
    [30] J. Li and J. B. Pendry, “Hiding under the Carpet: A New Strategy for Cloaking,” Phys. Rev. Lett., vol. 101, no. 20, p. 203901, Nov. 2008.
    [31] J. Zhang, L. Liu, Y. Luo, S. Zhang, and N. A. Mortensen, “Homogeneous optical cloak constructed with uniform layered structures,” Opt. Express, vol. 19, no. 9, pp. 8625–8631, Apr. 2011.
    [32] B.-I. Popa and S. A. Cummer, “Homogeneous and compact acoustic ground cloaks,” Phys. Rev. B, vol. 83, no. 22, p. 224304, Jun. 2011.
    [33] X.-L. Zhang, X. Ni, M.-H. Lu, and Y.-F. Chen, “A feasible approach to achieve acoustic carpet cloak in air,” Phys. Lett., vol. 376, no. 4, pp. 493–496, Jan. 2012.
    [34] “Concentrated solar power,” Wikipedia, the free encyclopedia. 26-Jun-2013.
    [35] H. Fan, R. Singh, and A. Akbarzadeh, “Electric Power Generation from Thermoelectric Cells Using a Solar Dish Concentrator,” J. Electron. Mater., vol. 40, no. 5, pp. 1311–1320, Apr. 2011.
    [36] B. Bian, S. Liu, S. Wang, X. Kong, Y. Guo, X. Zhao, B. Ma, and C. Chen, “Cylindrical optimized nonmagnetic concentrator with minimized scattering,” Opt. Express, vol. 21, no. S2, pp. A231–A240, Mar. 2013.

    下載圖示 校內:2015-08-05公開
    校外:2016-08-05公開
    QR CODE