| 研究生: |
李啟佑 Li, Chi-you |
|---|---|
| 論文名稱: |
液晶-高分子混合材料中形成之光子晶體結構與光學性質研究 Study of Structures and Optical Properties of Photonic crystals formed in Liquid crystal-Polymer Composites |
| 指導教授: |
傅永貴
Fuh, Ying-Guey Andy |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 液晶 、光子晶體 |
| 外文關鍵詞: | liquid crystal, photonic crystal |
| 相關次數: | 點閱:87 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究利用液晶-高分子混合材料形成之三維光子晶體和準晶體的結構及光學特性。在實驗中利用二道光(夾38.9°)干涉,做四次和七次曝光將干涉強弱分佈記錄在液晶-高分子材料中,形成全像液晶聚合物薄膜(holographic polymer dispersed liquid crystal, HPDLC),利用SEM觀察結構分佈發現結構為三維體心正方(Body-centered tetragonal, B.C.T)光子晶體和七重對稱準晶體的結構,液晶球直徑為0.64 μm,體心正方結構測量到的晶格間距分別為0.796 μm、0.806 μm、0.8 μm及3.416 μm,並和模擬干涉場的結果做比較,誤差分別為2.1 %、0.89 %、1.6 %、5.52 %,而準晶格結構所量測到的晶格間距為4.43μm,和模擬結果的誤差為5.14 %。使用多種光源如二極體泵浦固態雷射(DPSS; λ=532 nm)或氙燈源(300~800 nm)觀測不同入射角度的繞射場並相較時域有限差分法(FDTD)和傅立葉分析(Fourier Analysis)的模擬,結果相當符合。在加電場的情況下觀測,結果顯示在電壓漸漸上升的同時,第一階繞射效率會下降而零階穿透效率會上升,證實我們的材料為可調控的。此外我們也有觀測到光子晶體的超稜鏡現象(Superprism effect),且最大的散射角度約為24°。
This thesis investigates the structures and optical properties of three-dimensional (3-D) photonic crystals and quasi-periodic crystals based on liquid crystal-polymer composites. Experimentally, photonic crystals and quasi-periodic crystals were fabricated holographically using two-beam interference with four and seven exposures, respectively. The structures were studied using scanning electron microscopy, and found to be B.C.T and 7-fold quasicrystal, respectively. The size of droplets is 0.64 μm. For B.C.T, the lattice spacings were 0.796 μm, 0.806 μm, 0.8 μm, and 3.416 μm with errors of 2.1 %, 0.89 %, 1.6 %, and 5.52 % in comparison with theory, respectively. The lattice spacing of quasicrystal was 4.43μm with deviation of 5.14 % with theory. Using a diode pumped solid state laser (DPSS, λ= 532 nm)and a Xe lamp (λ=300~750 nm), we experimented the diffraction patterns from the samples with various incident angles. The results agree well with the simulsted ones obtained using Finite-Difference Time-Domain (FDTD) and Fourier Analyses. Under the application of an AC voltage, the first-order diffraction efficiency decreases, while the zoeoth-order transmission efficiency increases with the voltage. It demonstrates the fact that the fabricated photonic crystals are electrically tunable. Moreover, they possess superprism effect with a maximum dispersion angle ~24°.
[1] 液晶應用技術研究會 編著, “最新液晶應用技術”, 建興出版社(1997)
[2] 顧鴻壽 編著, “光電液晶平面顯示器-第二版”, 新文京開發出版社(2004)
[3] 松本正一、角田市良, “ 液晶之基礎與應用”, 復文書局 (1991)
[4] P. G. de Gennes and J. Prost, “The physics of Liquid Crystals”, Oxford
University Press, New York (1993), Second edition, Chap. 2.
[5] H. Kelker, “History of Liquid Crystals”, Mol. Cryst. Liq. Cryst., 21,1
(1972)
[6] P. J. Collings and M. Hird 原著, 楊怡寬, 郭蘭生, 鄭殷立 編譯,
”液晶化學及物理入門”,偉明圖書 第一版 (2001)
[7] 王珍珍, “混合聚亞醯胺配向膜調控液晶預傾角之研究與應用”,
國立成功大學, 光電科學與工程研究所 (2008)
[8] 葛士瑋, “利用應力調製聚合物混合液晶薄膜光柵製作可調式分光元件”, 國立成功大學, 光電科學與工程研究所 (2007)
[9] 黃啟炎, “液晶-聚合物混合薄膜之光學二倍頻現象之研究”, 國立成功大學, 物理研究所 (1997)
[10] 李明賢, “液晶聚合物薄膜光子晶體超稜鏡現象之研究”, 國立成功大學, 物理研究所 (2005)
[11] Paul S. Drzaic,“Liquid Crystal Dispersions”, World Scientific,
Singapore(1995)
[12] G. P. Crawford and Zumer, “Liquid Crystal in Complex Geometries”,
Taylor, London (1996)
[13] V. G. Chigrinov, “Liquid Crystal devices-physics and Applications”, Artech House, 1st ed (1999)
[14] J. W. Doane, A. Vaz, B-g. Wu and S. Zummer, “Field controlled light scattering from nematic microdroplets”, Appl. Phys. Lett., 48,
269(1986)
[15] 劉品妙, “雷射光強比值對記錄「液晶-聚合物」混合薄膜形成全像光柵時動態耦合效應影響之研究”, 國立成功大學, 物理研究所
[16] J. West, “Phase Separation of Liquid Crystals in Polymers” , Mol. Cryst. Liq. Cryst., 157,427 (1988)
[17] 林宗賢,“液晶空間濾波元件之研究與應用”,
國立成功大學, 光電科學與工程研究所 (2006)
[18] 林靜蘭, “利用聚合物混合液晶薄膜製作溫度感應器”,
國立成功大學, 物理研究所 (1994)
[19] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics”, Phys. Rev. Lett., 58, 2059 (1987)
[20] S.John, “Strong Localiztion of Photons in Certain Disordered Dielectric
Sperlattices”, Phys. Rev. Lett., 58, 86 (1987)
[21] 欒丕綱、陳啟昌,“光子晶體 從蝴蝶翅膀到奈米光子學”,五南出版
社 (2005)
[22] James J. Raftery, Jr., Aaron J. Danner, Jason C. Lee, and Kent D.
Choquettea, “Coherent coupling of two-dimensional arrays of defect
cavities in photonic crystal vertical cavity surface-emitting lasers”, Appl.
Phys. Lett., 86, 201104 (2005)
[23] A. E. Vasdekis, G. A. Turnbull, I. D. W. Samuela, P. Andrew and W. L. Barnes,“Low threshold edge emitting polymer distributed feedback laser based on a square lattice”, Appl. Phys. Lett., 86,161102 (2005)
[24] Lu Chena and A. V. Nurmikko, “Fabrication and performance of efficient blue light emitting III-nitride photonic crystals”, Appl. Phys. Lett., 85, 3663 (2004)
[25] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakamib, “Self-collimating phenomena in photonic crystals”, Appl. Phys. Lett., 74, 1212 (1999)
[26] H. Kosaka, et. al., “Superprism phenomena in photonic crystals”, Phys. Rev. B, vol. 58, 10096 (1998)
[27] J. Deng, X. Tao, “A simple self-assembly method for colloidal photonic crystals with a large area”, Journal of Colloid and Interface Science 286, 573 (2005)
[28] S. L. Kuai, G. Bader and P. V. Ashrita, “Tunable electrochromic photonic crystals”, Appl. Phys. Lett., 86, 221110 (2005)
[29] H. B. Sun, S. Matsuo and Hiroaki Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin”, Appl. Phys. Lett. 74, 786 (1999)
[30] C. S. Keea, S. P. Han, K. B. Yoon, C. G. Choi, and H. K. Sung, S. S. Oh, H. Y. Park, S. Park and H. Schift, “Photonic band gaps and defect modes of polymer photonic crystal slabs”, Appl. Phys. Lett., 86, 051101 (2005)
[31] Toader, T. Y. M. Chan and S. John, “Photonic Band Gap Architectures for Holographic Lithography”, Phys. Rev. Lett. 92, 043905 (2004)
[32] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media”, IEEE, 23, 888 (1975)
[33] 葛德彪,閆玉波,“電磁波時域有限差分方法”,西安電子科技大學(2001)
[34] G.R. Fowles, “Introduction to modern optics”, 新智出版社(1975)
[35] 陳逸寧,“基礎雷射全像術”,全華科技圖書 (2005)
[36] John D. Joannopolos, Robert D. Meade, Joshua N. Winn, “Photonic crystals”, Princeton University Press (1995)