| 研究生: |
蘇建元 Su, Jian-yuan |
|---|---|
| 論文名稱: |
甲苯馴養菌現地好氧共代謝三氯乙烯數值模式與現地試驗之比較 Comparison Between Model Simulations and Pilot Results for In-Situ Cometabolism of Trichloroethylene by Toluene-Utilizing Bacteria |
| 指導教授: |
郭明錦
Kuo, Ming-Ching Tom |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 生物整治模式 、甲苯 、三氯乙烯 、現地好氧共代謝 |
| 外文關鍵詞: | In-situ aerobic cometabolism, TCE, Toluene, Bioremediation model |
| 相關次數: | 點閱:147 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出了一個非穩態模式,此模式可模擬現地模廠之三氯乙烯(TCE)被甲苯分解菌共代謝降解之情形。模式包含了微生物成長機制、主要基質(甲苯)代謝、三氯乙烯共代謝、地下水的移行及擴散、及含水層中固體顆粒的吸附作用。模廠的監測結果對於模式模擬三氯乙烯的移除相當吻合。一階三氯乙烯降解效率常數由模式擬合模廠監測結果,其值約在0.2至0.3 L/mg-day之間。模式對於三氯乙烯移除是由於生物共代謝作用抑或吸附作用的釐清相當有幫助。共代謝試驗初期,吸附作用為主要機制,當甲苯開始被微生物降解後,生物共代謝作用也成為三氯乙烯移除的主要機制。
A nonsteady-state model is presented and used in simulating the results of in-situ pilot experiments where trichloroethylene (TCE) was cometabolically degraded by toluene-utilizing bacteria. The model includes microbial processes of microbial growth, metabolism of the primary substrate (toluene), and the cometabolic transformation of TCE with the transport processes of advection, dispersion, and sorption onto the aquifer solids. Model simulations of TCE removal agreed well with the pilot observations. The first-order constant of TCE-biodegradation rate was around 0.2 to 0.3 L/mg-day derived from model fits to the pilot observations. The model was useful in distinguishing the TCE removals contributed by biodegradation and sorption processes, respectively. While sorption was the controlling process at the beginning, the cometabolic transformation process eventually became dominant for TCE removal after establishing a
toluene-degrading consortium.
呂淑慧、李季眉、盧至人,“酚分解菌共代謝三氯乙烯之連續流試驗”,第二十四屆廢水處理技術研討會論文集,pp481-492,1999。
張峻嘉、盧至人、李季眉、黃錦怡、邱明良,“酚分解菌共代謝三氯乙烯之研究-砂管柱連續流試驗”,第二十四屆廢水處理技術研討會,pp179-184,1999。
梁康阜,水平多孔隙管在管線偵漏及未飽和層生物通氣法之研究與應用,國立成功大學碩士論文,2003。
梁康阜及郭明錦,生物通氣注氣系統之改善與應用,2003環境污染控制評估研討會,新竹,2003。
Arya, A., Hewett, T.A., Larson, R.G., and Lake, L.W., Dispersion and reservoir heterogeneity. SPE Reserv. Eng. 3 (1), 139-148, 1988.
Bear, J., Hydraulics of groundwater. McGraw-Hill, New York, 1979.
Borden, R.C. and Bedient, P.B., Bedient, Transport of dissolved hydrocarbons influenced by oxygen-limited biodegradation. 1. Theoretical development, Water Resour. Res., 22(13), pp. 1973-1982, 1986.
Fogel, M.M., Taddeo, A.R., and Fogel, S., Biodegradation of chlorinated ethenes by a methane-utilizing mixed culture, Appl. Environ. Microbiol., 51, pp. 720-724, 1986.
Han, Y.L., Kuo, M.C.T., Tseng, I.C., Lu, C.J., Semicontinuous microcosm study of aerobic cometabolism of trichloroethylene using toluene. J. Hazard. Mater. 148 (3), 583-591, 2007.
Hashimoto, I., K.B. Deshpande, H.C. Thomas, Peclet numbers and retardation factors for ion exchange columns. Ind. Eng. Chem. Fund. 3 (3), 213-218, 1964.
Hopkins, G.D., Semprini, L., and McCarty, P.L., Microcosm and in situ field studies of enhanced biotransformation of trichloroethylene by phenol-utilizing microorganisms, Applied and Environmental Microbiology, 59(7), pp. 2277-2285, 1993.
Jenal-Wanner, U., McCarty, P.L., Development and evaluation of semicontinuous slurry microcosms to simulate in situ biodegradation of trichloroethylene in contaminated aquifers. Environ. Sci. Technol. 31 (10), 2915-2922, 1997.
Kuo, M.C.T., Liang, K.F., Han, Y.L., and Fan, K.C., Pilot studies for in-situ aerobic cometabolism of trichloroethylene using toluene-vapor as the primary substrate, Water Research, 38, pp. 4125-4134, 2004.
Liang, K.F., Kuo, M.C.T., A model and experimental study for dissolution efficiency of gaseous substrates through in situ sparging. J. Hazard. Mater. 164, 204-214, 2009.
Little, C.D., Palumbo, A.V., Herbes, S.E., Lidstrom, M.E., Tyndall, R.L., and Gilmer, P.J., Trichloroethylene biodegradation by a methane-oxidizing bacterium, Appl. Environ. Microbiol., 54(4), pp. 951-956, 1988.
McCarty, P.L., Goltz, M.N., Hopkins, G.D., Dolan, M.E., Allan, J.P., Kawakami, B.T., and Carrothers, T.J., Full-scale evaluation of in situ cometabolic degradation of trichloroethylene in groundwater through toluene injection, Environ. Sci. Technol., 32(1), pp. 88-100, 1998.
Molz, F.J., Widdowson, M.A., and Benefield, L.D., Simulation of microbial growth dynamics coupled to nutrient and oxygen transport in porous media, Water Resources Research, 22(8), pp. 1207-1216, 1986.
Monod, J., The growth of bacteria cultures. Ann. Rev. Microbiol. 3, 371, 1949.
Ogata, Akio, R.B. Banks, A solution of the differential equation of longitudinal dispersion in porous media. U.S. Geological Survey Professional Paper 411-A, 1961.
Nelson, M.J.K., Montgomery, S.O., O’Neill, E.J., and Pritchard, P.H., Aerobic metabolism of trichloroethylene by a bacterial isolate, Appl. Environ. Microbiol., 52, pp. 383-384, 1986.
Nelson, M.J.K., Montgomery, S.O., W.R. Mahaffey, and P.H. Pritchard, Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway, Appl. Environ. Microbiol., 53, pp. 949-954, 1987.
Nelson, M.J.K., Montgomery, S.O., and Pritchard, P.H., Trichloroethylene metabolism by microorganisms that degrade aromatic compounds, Appl. Environ. Microbiol., 54, pp. 604-606, 1988.
Roberts, P.V., Hopkins, G.D., Mackay, D.M., and Semprini, L., A field evaluation of in-situ biodegradation of chlorinated ethenes: Part 1, methodology and field characterization, Ground Water, 28(4), pp. 591-604, 1990.
Semprini, L., Roberts, P.V., Hopkins, G.D., and McCarty, P.L., A field evaluation of in-situ biodegradation of chlorinated ethenes: Part 2, results of biostimulation and biotransformation experiments, Ground Water, 28(5), pp. 715-727, 1990.
Semprini, L., Hopkins, G.D., Roberts, P.V., Grbic-Galic, D., and McCarty, P.L., A field evaluation of in-situ biodegradation of chlorinated ethenes: Part 3, studies of competitive inhibition, Ground Water, 29(2), pp. 239-250, 1991.
Semprini, L. and McCarty, P.L., Comparison between model simulations and field results for in-situ biorestoration of chlorinated alphatics. Part 1. Biostimulation of methanotrophic bacteria, Ground Water, 29(3), pp. 365-374, 1991.
Semprini, L. and McCarty, P.L., Comparison between model simulations and field results for in-situ biorestoration of chlorinated alphatics. Part 2. Cometabolic transformations, Ground Water, 30(1), pp. 37-44, 1992.
Srinivasan, P. and Mercer, J.W., Simulation of biodegradation and sorption processes in ground water, Ground Water, 26(4), pp. 475-487, 1988.
U.S. EPA, Engineered Approaches to In Situ Bioremediation of Chlorinated Solvents: Fundamentals and Field Applications, http://www.epa.gov.clu-in.org, 2000.
Vannelli, T., M. Logan, Arciero, D.M., and Hooper, A.B., Degradation of halogenated aliphatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europaea, Appl. Environ. Microbiol., 56, pp. 1169-1171, 1990.
Wackett, L.P., and Gibson, D.T., Degradation of trichloroethylene by toluene dioxygenase in whole-cell studies with Pseudomonas putida F1, Appl. Environ. Microbiol., 54, pp. 1703-1708, 1988.
Wackett, L.P., Brusseau, G.A., Householder, S.R., and Hanson, R.S., Survey of microbial oxygenases: trichloroethylene degradation by propane-oxidizing bacteria. Appl. Environ. Microbiol., 55, pp. 2960-2964, 1989.
Wanner, U.I. And McCarty, P.L., Development and evaluation of semicontinuous slurry microcosms to simulate in-situ biodegradation of trichloroethylene in contaminated Aquifers, Environmental Science and Technology, 31, pp. 2915-2922, 1997.
Wilson, J.T. and Wilson, B.H., Biotransformation of trichloroethylene in soil, Appl. Environ. Microbiol., 49(1), pp. 242-243, 1985.