簡易檢索 / 詳目顯示

研究生: 呂宗訓
Lu, Tsung-Hsun
論文名稱: 脈衝爆震微推進器之概念驗證及原型發展
Concept Validation and Prototype Development of Pulsed Detonation Microthrusters
指導教授: 吳明勳
Wu, Ming-Hsun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 114
中文關鍵詞: 低溫共燒陶瓷脈衝爆震微推進器微燃燒
外文關鍵詞: LTCC, Pulse detonation, microthruster, microcombustion
相關次數: 點閱:83下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要針對氣態燃料脈衝爆震微推進器發展進行其概念驗證、設計以及最後使用低溫共燒陶瓷材料發展一微推進器原型。首先以實驗方式探討一矩形出口截面積僅為1 mm × 0.6 mm的無閥式脈衝爆震推進器在100 Hz以上連續操作情況。本研究使用高反應性的乙烯/氧氣反應物來縮短操作時反應波於微槽中形成爆震波距離。本研究使用高速顯影法拍攝證明反應波經由高重複性的火焰加與緩燃焰轉爆震焰過程(deflagration-to-detonation transition, DDT)達到爆震波狀態。接著針對脈衝爆震推進器操作時燃燒腔內壓力進行量測。由燃燒腔中壓力傳遞從點火前常壓開始增加至出口前超過 2 MPa以上。高速顯影及壓力量測驗證了使用乙烯/氧氣反應物,能使無閥式脈衝爆震機制於介尺度(sub-millimeter scale)微槽內成功操作並生成推力的可行性。
    第二部份主要針對驗證的設計概念發展整合一脈衝爆震微推進器原型。微推進器發展主要使用低溫共燒陶瓷科技,而推進器原型燃燒腔尺寸約為58 mm3。點火電路以及離子感測器亦整合於陶瓷微推進器中。微推進器外觀,流道及燃氣與電路通孔(via holes)主要利用CO2雷射進行切割。於離子感測器實驗中也再次驗證,反應波於微推進器內傳遞至出口前能夠達到2000 m/s以上。最後也針對無閥式脈衝爆震微推進器於不同進氣壓力下穩定操作之操作區間與及極限進行量測。於氧氣進氣壓力大於等於乙烯時,微推進器能夠達到較高的穩定操作頻率,其最大操作頻率能達到450 Hz。且微推進器產生推力峰值約為20至30 mN。

    The concept validation of a microthruster based on gaseous pulsed detonation and the prototype development using low temperature co-firing ceramic technologies are presented in this study. The feasibility of cyclic valveless pulsed detonation at frequencies over 100 Hz is investigated in a microchannel with 1 mm × 0.6 mm rectangular cross-section. Highly reactive ethylene/oxygen mixtures are utilized to reduce time and distance required for the reaction wave to run up to detonation state. High speed visualizations have shown that the reaction waves reach detonative state through highly repeatable flame acceleration and deflagration-to-detonation transition processes in the channel. Pressure measurements at four locations along the channel are performed to study the characteristics of detonation wave initiation and propagation in the sub-millimeter microchannel. The pressure in the channel is initially atmospheric, and abruptly rose over 2 MPa near the exit when the detonation wave passed by. In general, both the high-speed visualization and the pressure measurements prove the feasibility of utilizing valveless pulsed detonation as the mechanism for thrust generation at sub-millimeter scale using ethylene/oxygen mixtures.The validated concepts are implemented for the prototype development of an integrated pulsed detonation microthruster. The microthruster is fabricated using low temperature co-fired ceramic tape technology. The volume of the reaction channel in the microthruster was 58 mm3. Spark electrodes and ion probes are embedded in the ceramic microthruster. The channel and via holes are fabricated using laser cutting techniques. Ion probe measurements show that the reaction wave propagated at velocities larger than 2000 m/s before reaching the channel exit. The pulsed detonation microthruster has been successfully operated at frequencies as high as 450 Hz.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vi 表目錄 xii 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 3 1-3 研究目的 9 1-4 本文架構 10 第二章 研究方法 11 2-1 LTCC 製程設備 11 熱壓機 11 CO2雷射切割機 12 網印機 14 高溫箱型爐 15 2-2 CO2雷射製程參數分析 16 2-3 透明觀察窗整合製程 22 2-4 溫度量測元件整合製程與測試 25 2-5 火焰離子感測器電路原理與感測電路設計 28 第三章 微尺度內無閥式脈衝爆震之操作驗證 30 3-1 微槽設計與製作 30 3-2 實驗量測系統 36 3-3 脈衝爆震反應波高速顯影及速度分析 38 3-4 爆震波壓力量測及分析 53 3-5 小結 58 第四章無閥式脈衝爆震微推進器之研發 59 4-1 設計概念 59 4-2 低溫共燒陶瓷小型脈衝爆震推進器製程 61 4-3 實驗設置與推力量測系統 68 4-4 反應波傳遞速度 71 4-5 操作區間與推力量測 77 4-6 小結 84 第五章 結論與未來展望 85 5-1 結論 85 5-2 未來展望 87 參考文獻 88 附錄A 脈衝爆震循環熱效率分析 94 附錄B 不銹鋼脈衝爆震推進器各層塊設計工程圖 107 附錄C LTCC 脈衝爆震微推進器歷代原型發展 109 附錄D LTCC 脈衝爆震推進器各層塊設計工程圖 113

    [1] K. Bullis, GE's risky energy research, in Technology Review. 2009, MIT
    [2] W. Pusch and H. G. Wagner (1962), Investigation of the dependence of the limits of detonability on tube diameter, Combust. Flame 6(3), 157-162.
    [3] M. H. Wu, P. Burke, S. F. Son, and R. A. Yetter (2007), Flame acceleration and the transition to detonation of stoichiometric ethylene/oxygen in microscale tubes, Proceedings of the Combustion Institute 31, 2429-2436.
    [4] M. H. Wu and P. S. Lin (2010), Design, fabrication and characterization of a low-temperature co-fired ceramic gaseous bi-propellant microthruster, J. Micromech. Microeng. 18, pp. 085026.
    [5] M. H. Wu and R. A. Yetter (2008), Development and analysis of a LTCC micro stagnation-point flow combustor, J. Micromech. Microeng. 18, pp. 125016.
    [6] M. H. Wu and R. A. Yetter (2009), A novel electrolytic ignition monopropellant microthruster based on low temperature co-fired ceramic tape technology, Lab on a Chip 9(7), 910-916.
    [7] Y. B. Zel'dovich (1940), On the Use of Detonative Combustion in Power Engineering, Journal of Technical Physics 10(17), 1453-1461; A translation has been accepted for publication in Journal of Propulsion and Power.
    [8] N. Smirnov (2007), Pulse Detonation Engines: Advantages and Limitations, in Advance Combustion and Aerothermal Technologies, 353-363.
    [9] E. Wintenberger and J. E. Shepherd (2006), Model for the performance of airbreathing pulse-detonation engines, Journal of Propulsion and Power 22(3), 593-603.
    [10] E. Wintenberger and J. E. Shepherd (2006), Thermodynamic cycle analysis for propagating detonations, Journal of Propulsion and Power 22(3), 694-697.
    [11] Y. H. Wu, F. H. Ma, and V. Yang (2003), System performance and thermodynamic cycle analysis of airbreathing pulse detonation engines, Journal of Propulsion and Power 19(4), 556-567.
    [12] S. J. Jacobs, The Energy of Detonation, Navord Report 4366, U.S. Naval Ordnance Laboratory, White Oak, MD. Available as NTIS AD113271 - Old Series.
    [13] W. Fickett and W. C. Davis (1979), Detonation: Theory and Experiment, Chap. 2, 35-38, Dover Publication, Inc., New York.
    [14] G. D. Roy, S. M. Frolov, A. A. Borisov, and D. W. Netzer (2004), Pulse detonation propulsion: challenges, current status, and future perspective, Progress in Energy and Combustion Science 30(6), 545-672.
    [15] F. Schauer, J. Stutrud, and R. Bradley (2001), Detonation Initiation Studies and Performance Results for Pulsed Detonation Engine Applications, AIAA 2001-1129
    [16] C. M. Brophy and R. K. Hanson (2006), Fuel distribution effects on pulse detonation engine operation and performance, Journal of Propulsion and Power 22(6), 1155-1161.
    [17] C. M. Brophy, L. S. Werner, and J. O. Sinibaldi (2003), Performance Characterization of a Valveless Pulse Detonation Engine, AIAA 2003-1344
    [18] D. W. Mattison, J. T. C. Liu, J. B. Jeffries, R. K. Hanson, C. M. Brophy, and J. O. Sinibaldi (2005), Tunable Diode-Laser Temperature Sensor for Evaluation of a Valveless Pulse Detonation Engine, AIAA 2005-0224
    [19] F. H. Ma, J. Y. Choi, and V. Yang (2008), Internal flow dynamics in a valveless airbreathing pulse detonation engine, Journal of Propulsion and Power 24(3), 479-490.
    [20] F. H. Ma and V. Yang (2006), A Unified Flow Analysis of Valveless Airbreathing Pulse Detonation Engine, Pulse and Continuous Detonation Propulsion, 219–234.
    [21] F. H. Ma, J. Y. Choi, and V. Yang (2006), Internal Flow Dynamics and Performance of Valveless Airbreathing Pulse Detonation Engine, AIAA 2006-1024
    [22] T. Bussing and G. Pappas (1994), An Introduction to Pulse Detonation Engine, AIAA 94-0263
    [23] E. D. Lynch, R. Eidelman, and S. Palaniswamy (1994), Computational fluid dynamic analysis of the pulse detonation wave engine concept, AIAA 94-0264
    [24] S. Eidelman and W. Grossman (1992), Pulsed Detonation Engine Experimental and Theoretical Review, AIAA 92-3168
    [25] K. Kailasanath (2001), A Review of PDE Research-Performance Estimates, AIAA 2001-0474
    [26] K. Kailasanath (2003), Recent developments in the research on pulse detonation engines, AIAA Journal 41(2), 145-159.
    [27] K. R. McManus and E. R. Furlong (2001), MEMS-Based Pulse Detonation Engine for small-scale propulsion applications, AIAA 01-3469
    [28] S. Kitano, Y. Kimura, H. Sato, and A. K. Hayashi (2007), Micro-Size Pulse Detonation Engine Performance, AIAA 2007-581
    [29] R. E. B. Leminski, E. W. Simoes, R. Furlan, I. Ramos, M. R. Gongora-Rubio, N. Morimoto, and J. J. Satiago-Aviles (2005), Development of Microfluidic Devices using LTCC Substrates, IMAS/ACerS 1st International Conference on Ceramic Interconnect and Ceramic Microsystems Technologies, Baltimore, MD, U.S.A.
    [30] N. Ibanez-Garcia, C. S. Martinez-Cisneros, F. Valdes, and J. Alonso (2008), Green-tape ceramics. New technological approach for integrating electronics and fluidics in microsystems, Trac-Trends in Analytical Chemistry 27(1), 24-33.
    [31] C. Rusu, K. Persson, B. Ottosson, and D. Billger (2006), LTCC interconnects in microsystems, Journal of Micromechanics and Microengineering 16(6), S13-S18.
    [32] C. S. Martinez-Cisneros, N. Ibanez-Garcia, F. Valdes, and J. Alonso (2007), LTCC microflow analyzers with monolithic integration of thermal control, Sensors and Actuators A-Physical 138(1), 63-70.
    [33] L. J. Golonka, T. Zawada, J. Radojewski, H. Roguszczak, and M. Stefanow (2006), LTCC microfluidic system, International Journal of Applied Ceramic Technology 3(2), 150-156.
    [34] M. R. Gongora-Rubio, P. Espinoza-Vallejos, L. Sola-Laguna, and J. J. Santiago-Avilés (2001), Overview of low temperature co-fired ceramics tape technology for meso-system technology (MsST), Sensors and Actuators A: Physical 89(3), 222-241.
    [35] A. J. Moll (2007), Microsystems and Microfluidics: Why not LTCC?, IAMPS/ACerS 3rd International Conference and Exhibition on Ceramic Interconnect and Ceramic Microsystems Technologies, Denver, CO USA.
    [36] A. Roosen (2001), New lamination technique to join ceramic green tapes for the manufacturing of multilayer devices, Journal of the European Ceramic Society 21(10-11), 1993-1996.
    [37] M. H. Wu, R. A. Yetter, and V. Yang, A LTCC Burner for Studying Sub-millimeter Scale Flames, in IMAPS/ACerS 3rd International Conference and Exhibition on Ceramic Interconnect and Ceramic Microsystems Technologies. 2007: Denver, CO USA.,
    [38] M. H. Wu, Development and Experimental Analyses of Meso and Micro Scale Combustion Systems. 2007, Ph.D thesis, The Pennsylvania State University: University Park, U.S.A.
    [39] W. Fan, C. J. Yan, X. Q. Huang, Q. Zhang, and L. X. Zheng (2003), Experimental investigation on two-phase pulse detonation engine, Combustion and Flame 133(4), 441-450.
    [40] E. Wintenberger, J. M. Austin, M. Cooper, S. Jackson, and J. E. Shepherd (2004), Analytical model for the impulse of single-cycle pulse detonation tube (vol 19, pg 22, 2003), Journal of Propulsion and Power 20(4), 765-767.
    [41] C. X. Peng, W. Fan, Q. Zhang, C. Yuan, W. J. Chen, and C. J. Yan (2011), Experimental study of an air-breathing pulse detonation engine ejector, Experimental Thermal and Fluid Science 35(6), 971-977.
    [42] Z. W. Wang, C. J. Yan, L. X. Zheng, and W. Fan (2009), Experimental Study of Ignition and Detonation Initiation in Two-Phase Valveless Pulse Detonation Engines, Combustion Science and Technology 181(10), 1310-1325.
    [43] K. Kawane, S. Shimada, J. Kasahara, and A. Matsuo (2011), The influence of heat transfer and friction on the impulse of a detonation tube, Combustion and Flame 158(10), 2023-2036.
    [44] K. H. Han, R. D. McConnell, C. J. Easley, J. M. Bienvenue, J. P. Ferrance, J. P. Landers, and A. B. Frazier (2007), An active microfluidic system packaging technology, Sensors and Actuators B-Chemical 122(1), 337-346.
    [45] K. Malecha and L. J. Golonka (2008), Microchannel fabrication process in LTCC ceramics, Microelectronics Reliability 48(6), 866-871.
    [46] W. K. C. Yung and J. Zhu (2007), Studies on laser ablation of low temperature co-fired ceramics (LTCC), Microelectronics International 24(3), 27-33.
    [47] W. C. Choi and G. Chryssolouris (1995), Analysis of the Laser Grooving and Cutting Processes, Journal of Physics D-Applied Physics 28(5), 873-878.
    [48] P. Bembnowicz and L. J. Golonka (2010), Integration of transparent glass window with LTCC technology for mu TAS application, Journal of the European Ceramic Society 30(3), 743-749.
    [49] 呂宗訓 and 吳明勳 (3月20日,2010), 低溫共燒陶瓷微型脈衝爆震推進器之設計、製程開發與初步測試, 中華民國第二十屆燃燒與能源學術研討會,台灣台南
    [50] B. J. McBride and S. Gordon (1996), Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications II, User's Manual and Program Description, NASA RP-1311-P2

    下載圖示 校內:立即公開
    校外:2013-04-11公開
    QR CODE