簡易檢索 / 詳目顯示

研究生: 黃智偉
Huang, Chih-Wei
論文名稱: 分析泛素缺失對惡性腫瘤細胞的影響
Analysis of the Effect of Ubiquitin Deficiency on Malignant Cancer Cells
指導教授: 張文粲
Chang, Wen-Tsan
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 111
中文關鍵詞: 泛素二去氧葡萄糖每福敏依托泊苷藥物敏感性
外文關鍵詞: ubiquitin, 2-DG, metformin, etoposide, drug sensitivity
相關次數: 點閱:110下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蛋白質是生物體內非常重要的產物,在人體中龐大的新陳代謝機制都是依靠不同蛋白質而產生出不同的功能而形成的一個巨大機制網,然而也不是所有蛋白質都有正常的功能,假如蛋白質遇到受損的或是異常摺疊不完全時,身體內就會有一套非常重要的機制來將之分解,那個最重要的小分子就是泛素。
    泛素(ubiquitin)是一種存在於真核細胞的小蛋白,是高度保存的已知蛋白質之一,它的主要功能為標記需要分解掉的蛋白質使其被水解。我們知道在惡性腫瘤的生長或是爬行能力上面都比其他細胞來得迅速,這代表其代謝的能力及速度勢必也需要加快的,就過去的文獻研究發現,在惡性腫瘤中,泛素化路徑被高度活化的表現是有明顯上升的,因此我們利用RNA干擾技術(RNA interference)來針對惡性腫瘤中的泛素表現量進行穩定抑制,建立穩定默化惡性腫瘤的細胞株來進行以下的研究。
    我先從網路資料庫(Human Protein Atlas)中進行搜尋,分析比對泛素在正常組織及腫瘤細胞的表現量,發現無論在正常組織中或是腫瘤細胞都有看到泛素高表現的情形;接著我利用四株不同腫瘤細胞進行RNAi的轉染以建立挑選缺乏泛素表現得穩定默化細胞株,利用拍照觀察、MTT細胞增殖分析、細胞群落分析、傷口癒合實驗、Boyden chamber、細胞週期分析等實驗中都發現在缺乏泛素表現的細胞株相對於對照組其爬行能力以及細胞生長能力都有顯著的降低。
    為了更進一步了解在缺乏泛素的情形下對於藥物的敏感性,因此我們利用了三種不同的抗癌藥物二去氧葡萄糖、每福敏、依托泊苷(2-Deoxy-D-glucose、Metformin、Etoposide)來偵測其細胞的變化,我們發現在二去氧葡萄糖的處理下,缺乏泛素表現的細胞株相對於對照組都有更明顯降低細胞生長能力以及毒殺能力,顯示出穩定默化泛素細胞株有著較高的藥物敏感性,並且隨著不同濃度的藥物處理會有不同的殺傷效果;而在每福敏的處理下,也有藥物敏感性及Dosage effect,但是效果相較於2-DG比較起來是比較弱的;最後在依托泊苷的處理中,由於依托泊苷的殺傷力很強,直接針對topoisomerase II進行攻擊,因此我們在泛素默化細胞株以及對照組是沒有發現明顯的差異。最後我們也在西方點墨法(Western blot)的分析發現細胞週期的相關蛋白表現量降低,這可能來說明造成細胞生長變慢的一項的主要原因。
    歸納以上結果,我們可以發現在惡性腫瘤中缺乏泛素的情形下可以使得腫瘤細胞的惡性程度降低,這些都是未來在治療腫瘤上面的一項新指標。

    Ubiquitin is a small protein that has involved in almost all eukaryotic organisms and it is highly conserved. It consists of 76 amino acids and has a molecular mass of about 8.5 kDa. The function of ubiquitin is to specifically target the proteins that need to be degraded. Recent studies show that many types of cancer present the high level of ubiquitin, which promotes cancer cell migration and tumor growth as compared with the normal cell. To approach more detail results, I have established a stable knockdown ubiquitin in four different malignant cancer cells, including HeLa, H1299, MDA-MB-231 and PC3 by applying the RNAi technique. Analysis of the knockdown cell line shows that loss of ubiquitin expression would decreased the cell growth, migration, colony formation ability and colony numbers. Moreover, to understand the drug sensitivity between the stable knockdown cell lines and control cell lines, I use 2-Deoxy-D-glucose, metformin and etoposide to examine the difference. The result shows that stable knockdown cell lines have a higher drug sensitivity and have the dosage effect. Beside these results, flow cytomertry assays show that loss of ubiquitin casues the change of cell cycle distribution and a higher amount of G2/M phase. Furthermore, western blot assays also demonstrate that many cyclin proteins such as cdc2 and cyclinB1 are downregulated. Taken together, the ubiquitin deficiency on malignant cancer cell may be potential anti-tumor treatment in the future.

    目錄 第一章 序論.............1 1-1泛素(Ubiquitin)及泛素-蛋白酶系統(Ubiquitin-proteasome system)...1 1-2泛素化路徑與腫瘤之間的關係..2 1-3泛素化路徑所引發不同的訊號..2 1-4子宮頸癌(Cervical cancer)、乳癌(Breast cancer)、攝護腺癌(Prostate cancer)與肺癌...4 1-5 2-去氧葡萄糖(2-Deoxyglucose,2-DG)、每福敏(Metformin)、依托泊 苷(Etoposide)和腫瘤治療的關係...5 1-6 現今藥物發展與泛素化路徑的關係...6 1-7研究目的....7 第二章 實驗材料及方法 .........8 2-1 實驗材料 2-1-1 勝任細胞 (competent cell)菌株..8 2-1-2 限制酶 (restriction enzyme) ...8 2-1-3 載體...8 2-1-4 細胞株....8 2-1-5 化學藥品...9 2-1-6 試劑....12 2-1-7 抗體....12 2-1-8 培養液...13 2-1-9 細菌用的培養基-LBA plate...14 2-1-10 緩衝液...14 2-1-11 各種試劑配製...20 2-1-11 勝任細胞 (competent cell) 之製備...21 2-1-12 儀器設備...22 2-2 實驗方法 2-2-1 基本分子生物技術..22 2-2-2 細胞培養程序....28 2-2-2-1 細胞株與細胞的培養...28 2-2-2-2 細胞數目的計數...30 2-2-2-3 細胞的冷凍儲存...30 2-2-2-4 解凍細胞....31 2-2-3 細胞相關實驗....31 2-2-3-1 短暫性轉染(Transient transfection) ...31 2-2-3-2 雙重冷光基因活性的測定(Dual-Luciferase assay) .32 2-2-3-3 蛋白質定量(Micro Protein Assay Reagent Kit).32 2-2-3-4 西方墨點法(Western blotting)...32 2-2-3-5 建立持續抑制UB的穩定細胞株(stable cell lines)..34 2-2-3-6 細胞生長實驗...34 2-2-3-7 細胞增殖分析 (MTT assay)...34 2-2-3-8 溴脫氧尿核苷混合實驗(BrdU incorporation assay)..34 2-2-3-9 細胞集落形成法 (Colony formation assay).36 2-2-3-10 傷口癒合細胞爬行能力分析實驗 (Wound healing migration assay)...36 2-2-3-11 粒線體膜電位測定 (Mitochondria membrane potential)...36 2-2-3-12 細胞內ROS 測定..37 2-2-3-13 細胞內H2O2 測定...37 2-2-3-14 細胞週期測定 (Cell cycle) ..37 2-2-3-15 Propidium Iodide (PI)-Annexin V 雙染實驗.38 2-2-3-16 乳酸脫氫酶活性測定 (LDH activity assay) .39 2-2-3-17 細胞內ATP 含量測定..39 2-2-3-18 細胞培養液pH 值測定..40 2-2-3-19 葡萄糖攝取實驗...41 2-2-4 實驗質體的構築方法...41 第三章 實驗結果..........43 3-1分析泛素在正常組織及腫瘤細胞的表現量..43 3-2分析實驗室腫瘤細胞泛素及相關蛋白的表現量.43 3-3利用siRNA 評估系統篩選出有效抑制ubiquitin表現的shRNA..44 3-4建立穩定性默化泛素表現的四株腫瘤細胞株..44 3-5分析泛素缺失對於細胞生長的影響..44 3-6分析泛素缺失對於細胞爬行能力的影響...45 3-7分析泛素缺失對於細胞週期的變化..46 3-8分析處裡不同濃度的二去氧葡萄糖對於泛素缺失細胞之影響..46 3-9分析處理不同濃度的二去氧葡萄糖(2-Deoxy-D-glucose)對於泛素缺失 細胞之細胞凋亡情形....47 3-10分析處裡不同濃度的每福敏(Metformin)對於泛素缺失細胞之影響..47 3-11分析處裡不同濃度的依托泊苷(Etoposide)對於泛素缺失細胞之影 響...48 第四章 討論.............49 第五章 參考文獻...........52 第六章 實驗結果...........59 圖目錄 圖一、利用網路資料庫(Human Protein Atlas)分析泛素(Ubiquitin)在正常組織及腫瘤細胞的表現量...........59 圖二、利用西方墨點法分析六株癌細胞泛素及相關蛋白的表現量.60 圖三、小片段核糖核酸(siRNA)表現系統...61 圖四、冷光表現載體系統及利用冷光報導基因分析小片段siRNA之抑制效果;綠螢光表現載體及綠螢光拍照分析與西方點墨法分析siRNA之抑制效果......62 圖五、利用siUB標的序列與冷光基因融合載體分析shRNA抑制效果以及利用siUB標的序列與綠螢光蛋白融合載體分析shRNA抑制效果..... .63 圖六、利用 shUB/hyg+ 分別在四株不同的細胞中構建出可以有效持續抑制ubiquitin表現的細胞株...64 圖七、利用西方點墨法分析所篩選出的穩定默化泛素細胞株其泛素的表現量.....65 圖八、比較四株不同腫瘤細胞野生型細胞株及穩定默化泛素細胞株之細胞型態....66 圖九、分析在野生型HeLa細胞株及穩定默化泛素細胞株之生長情形.67 圖十、分析在野生型H1299細胞株及穩定默化泛素細胞株之生長情形..68 圖十一、分析在野生型MDA-MB-231細胞株及穩定默化泛素細胞株生長情形.....69 圖十二、分析在野生型PC3細胞株及穩定默化泛素細胞株之生長情形.70 圖十三、分析在野生型HeLa細胞株及穩定默化泛素細胞株其細胞爬行能力的差異.....71 圖十四、分析在野生H1299細胞株及穩定默化泛素細胞株其細胞爬行能力的差異...72 圖十五、分析在野生MDA-MB-231細胞株及穩定默化泛素細胞株其細胞爬行能力的差異...73 圖十六、分析在野生PC3細胞株及穩定默化泛素細胞株其細胞爬行能力的差異....74 圖十七、分析在野生HeLa細胞株及穩定默化泛素細胞株其細胞週期變化....75 圖十八、分析在野生H1299細胞株及穩定默化泛素細胞株其細胞週期變化....76 圖十九、分析在野生MDA-MB-231細胞株及穩定默化泛素細胞株其細胞週期變化.....77 圖二十、分析在野生PC3細胞株及穩定默化泛素細胞株其細胞週期變化....78 圖二十一、利用西方點墨法分析HeLa細胞株及穩定默化株生長與爬行相關蛋白表現量....79 圖二十二、分利用西方點墨法分析H1299細胞株及穩定默化株生長與爬行相關蛋白表現量...80 圖二十三、利用西方點墨法分析MDA-MB-231及穩定默化株生長與爬行相關蛋白表現量...81 圖二十四、利用西方點墨法分析PC3及穩定默化株生長與爬行相關蛋白表現量....82 圖二十五、分析HeLa穩定默化泛素細胞株在處理不同濃度二去氧葡萄糖之生長速度...83 圖二十六、分析HeLa穩定默化泛素細胞株在處理不同濃度二去氧葡萄糖之細胞形成群落的能力...84 圖二十七、分析H1299穩定默化泛素細胞株在處理不同濃度二去氧葡萄糖之生長速度....85 圖二十八、分析H1299穩定默化泛素細胞株在處理不同濃度二去氧葡萄糖之細胞形成群落的能力....86 圖二十九、分析MDA-MB-231穩定默化泛素細胞株在處理不同濃度二去氧葡萄糖之生長速度....87 圖三十、分析MDA-MB-231穩定默化泛素細胞株在處理不同濃度二去氧葡萄糖之細胞形成群落的能力...88 圖三十一、分析PC3穩定默化泛素細胞株在處理不同濃度二去氧葡萄糖之生長速度....89 圖三十二、分析PC3穩定默化泛素細胞株在處理不同濃度二去氧葡萄糖之細胞形成群落的能力...90 圖三十三、分析HeLa穩定默化泛素細胞株在處理不同濃度二去氧葡萄糖之細胞凋亡情形...91 圖三十四、分析H1299穩定默化泛素細胞株在處理不同濃度二去氧葡萄糖之細胞凋亡情形....92 圖三十五、分析MDA-MB-231穩定默化泛素細胞株在處理不同濃度二去氧葡萄糖之細胞凋亡情形..93 圖三十六、分析分析PC3穩定默化泛素細胞株在處理不同濃度二去氧葡萄糖之細胞凋亡情形....94 圖三十七、分析HeLa穩定默化泛素細胞株在處理不同濃度每福敏之生長速度.....95 圖三十八、分析HeLa穩定默化泛素細胞株在處理不同濃度每福敏之細胞形成群落的能力...96 圖三十九、分析H1299穩定默化泛素細胞株在處理不同濃度每福敏之生長速度....97 圖四十、分析H1299穩定默化泛素細胞株在處理不同濃度每福敏之細胞形成群落的能力...98 圖四十一、分析MDA-MB-231穩定默化泛素細胞株在處理不同濃度每福敏之生長速度....99 圖四十二、分析MDA-MB-231穩定默化泛素細胞株在處理不同濃度每福敏之細胞形成群落的能力...100 圖四十三、分析PC3穩定默化泛素細胞株在處理不同濃度每福敏之生長速度....101 圖四十四、分析PC3穩定默化泛素細胞株在處理不同濃度每福敏之細胞形成群落的能力...102 圖四十五、分析HeLa穩定默化泛素細胞株在處理不同濃度依托泊苷之生長速度.....103 圖四十六、分析HeLa穩定默化泛素細胞株在處理不同濃度依托泊苷之細胞形成群落的能力...104 圖四十七、分析H1299穩定默化泛素細胞株在處理不同濃度依托泊苷之生長速度.....105 圖四十八、分析H1299穩定默化泛素細胞株在處理不同濃度依托泊苷之細胞形成群落的能力....106 圖四十九、分析MDA-MB-231穩定默化泛素細胞株在處理不同濃度依托泊苷之生長速度....107 圖五十、分析MDA-MB-231穩定默化泛素細胞株在處理不同濃度依托泊苷之細胞形成群落的能力...108 圖五十一、分析PC3穩定默化泛素細胞株在處理不同濃度依托泊苷之生長速度.....109 圖五十二、分析PC3穩定默化泛素細胞株在處理不同濃度依托泊苷之細胞形成群落的能力....110

    [1] William, A., Dunn, J. Autophagy and related mechanisms of lysosome-mediated
    protein degradation. Cell Press. 139–143 (1994).
    [2] J F Dice. Molecular determinants of protein half-lives in eukaryotic cells. The
    FASEB Journal 5, 349-357(1987).
    [3] Goldstein, G., et al. Isolation of a polypeptide that has lymphocyte
    differentiating properties and is probably represented universally in living cells.
    Proc Natl Acad Sci. USA 72, 11–15(1975).
    [4] Aaron Ciechanover. The ubiquitin-proteasome proteolytic pathway. Cell Press
    7,13-21(1994).
    [5] Choongseob, O., Soonyong, P., et al. Downregulation of ubiquitin level via
    knockdown of polyubiquitin gene Ubb as potential cancer therapeutic
    intervention. Scientific Reports 3. (2013) .
    [6] Mark Hochstrasser. Evolution and function of ubiquitin-like protein-conjugation
    systems. Nature Cell Biology 2, 153 – 157(2000).
    [7] Simone, F., Krishnaraj, R., et al. Ubiquitylation in immune disorders and
    cancer:from molecular mechanisms to therapeutic implications. EMBO
    Molecular Medicine 4, 545-556(2012).
    [8] Jiahong, L., Liqiang, H., et al. NRBF2 regulates autophagy and prevents liver
    injury by modulating Atg14L-linked phosphatidylinositol-3 kinase III activity.
    Nature Communications, 5,(2014)

    [9] S. S. Wing, A. L. Goldberg. Glucocorticoids activate the
    ATP-ubiquitin-dependent proteolytic system in skeletal muscle during fasting.
    American Journal of Physiology.(1993).
    [10] Maurizio Bossola, Maurizio Muscaritoli. Increased muscle ubiquitin mRNA
    levels in gastric cancer patients. American Journal of Physiology. .
    1518-1523.(2001).
    [11] J.-L. Qu1, X.-J. Qu. Gastric cancer exosomes promote tumour cell proliferation
    through PI3K/Akt and MAPK/ERK activation.(2009).
    [12] Irfan Rahman, William MacNee. Role of transcription factors in inflammatory
    lung diseases. Thorax ,601-612(1998).
    [13] Ciechanover, A., Daniel, D., et al. Ubiquitin dependence of selective protein
    degradation demonstrated in the mammalian cell cycle mutant ts85. Cell ,
    37,57-66(1984).
    [15] Rodrigues, N., Rowan, A., et al. p53 mutations in colorectal cancer. Proc Natl
    Acad Sci 19,7555-7559(1990).
    [16] Kaelin, W. The von Hippel-Lindau tumor suppressor gene and kidney cancer.
    Clin Cancer Res ,10,(2004)
    [17] Battagli, C., Uzzo, R.,et al. Promoter hypermethylation of tumor suppressor
    genes in urine from kidney cancer patients. Cancer Res. 24,8695-8699(2003).
    [18] Cowey, C., Kimryn,R., et al. VHL Gene Mutations in Renal Cell Carcinoma:
    Role as a Biomarker of Disease Outcome and Drug Efficacy. Curr Oncol Rep.
    2 ,94-101(2010).

    [19] Gnarra, J., et al. Mutations of the VHL tumour suppressor gene in renal
    carcinoma. Nature Genetics 7, 85 - 90 (1994).
    [20] Jiang,Y., et al. Gene Expression Profiling in a Renal Cell Carcinoma Cell Line
    Dissecting VHL and Hypoxia-Dependent Pathways. Mol Cancer Res 1, 453–
    462(2003).
    [21] Yelena, Y., et al. Non-canonical ubiquitin based signals for proteasomal
    degradation. Cell Science. 539-548(2012).
    [22] Joerg, H, Lilach, O., et al. Ubiquitin and Ubiquitin-Like Proteins in Protein
    Regulation. Circulation Research. Circ Res,1276-1291(2007).
    [23] Ciechanover, C., et al. The ubiquitin-proteasome pathway: The complexity and
    myriad functions of proteins death. PNAS. 2727–2730(1998).
    [24] Hwan-Ching, T., Erin M. Schuman. Ubiquitin, the proteasome and protein
    degradation in neuronal function and dysfunction. Nature Reviews
    Neuroscience, 9, 826-838(2008).
    [25] Mani, A and Gelmann, E. The Ubiquitin-Proteasome Pathway and Its Role
    in Cancer. Journal of clinical oncology,23,4776-4789(2005).
    [26] Simona,P., Sigismund,S., et al. A single motif responsible for ubiquitin
    Recognition and monoubiquitination in endocytic proteins. Nature 416,
    451-455(2002).
    [27] Sadowski, M., Suryadinata, R., et al. Protein Mono-ubiquitination
    and Poly-ubiquitination Generate Structural Diversity to Control Distinct
    Biological Processes. IUBMB Life, 64,136–142(2012).

    [28] S.Y. Huen, M., et al. BRCA1 and its toolbox for the maintenance of genome
    integrity. Nature Reviews Molecular Cell Biology 11, 138-148(2010).
    [29] Bremm, A., M V Freund, S., et al. Lys11-linked ubiquitin chains adopt
    compact conformations and are preferentially hydrolyzed by the deubiquitinase
    Cezanne. Nature Structural & Molecular Biology 17, 939–947 (2010).
    [30] Randow, F., Lehner, P. Viral avoidance and exploitation of the ubiquitin
    system. Nature Cell Biology 11, 527 - 534 (2009).
    [31] Bremm, A., Komander, D. Emerging roles for Lys11-linked polyubiquitin in
    cellular regulation. Trends Biochem Sci 7,355-363(2011).
    [32] Birsa, N., Norkett, R., et al. Lysine 27 Ubiquitination of the Mitochondrial
    Transport Protein Miro Is Dependent on Serine 65 of the Parkin Ubiquitin
    Ligase. Journal of Biological Chemistry, 289, 14569-14582 (2014).
    [33] Mark Hochstrasser. Ubiquitin, proteasomes, and the regulation of intracellular
    protein degradation. Current Opinion in Cell Biology, 7, 215-223(1995).
    [34] Zhijian J. Chen. Ubiquitin signalling in the NF-kappaB pathway. Nature Cell
    Biology 7, 758 - 765 (2005).
    [35] Duncan, L., et al. Lysine‐63‐linked ubiquitination is required for
    endolysosomal degradation of class I molecules. The EMBO Journal, 25,
    1635-1645(2006).
    [36] Bosch, F., Manos, M., et al. Prevalence of Human Papillomavirus in Cervical
    Cancer: a Worldwide Perspective. JNCI J Natl Cancer Ins, 11, 796-802(1995).
    [37] Jan M. M. Walboomers ., et al. Human papillomavirus is a necessary cause of
    invasive cervical cancer worldwide. The Journal of Pathology, 1 ,12-19(1999).
    [38] Boscha, F ., et al. The viral etiology of cervical cancer. Elsevier. 183-190.
    (2002).
    [39] Perou, C., Sørlie, T., et al. Molecular portraits of human breast tumours.
    Nature , 406, 747-752(2000).
    [40] Lengyel, E., Prechtel, D., et al. c-Met overexpression in node-positive breast
    cancer identifies patients with poor clinical outcome independent of Her2/neu.
    Journal of Cancer , 113, 678 – 682 (2005).
    [41] Skobe, M., Hawighorst, T., et al. Induction of tumor lymphangiogenesis by
    VEGF-C promotes breast cancer metastasis. Nature Medicine, 7, 192 - 198
    (2001)
    [42] Thor, A., Moore II, D., et al. Accumulation of p53 Tumor Suppressor Gene
    Protein: An Independent Marker of Prognosis in Breast Cancers. JNCI J Natl
    Cancer Inst ,11 , 845-855(1992).
    [43] Slamon, D., Shak, S., et al. Use of Chemotherapy plus a Monoclonal Antibody
    against HER2 for Metastatic Breast Cancer That Overexpresses HER2. The
    New England Journal of Medicine , 344,783-792(2001).
    [44] Partin AW, Yoo J. The use of prostate specific antigen, clinical stage and
    Gleason score to predict pathological stage in men with localized prostate
    cancer. The Journal of Urology, 150(1):110-114(1993).
    [45] Zatloukala, P., Petruzelka, L., et al. Concurrent versus sequential
    chemoradiotherapy with cisplatin and vinorelbine in locally advanced
    non-small cell lung cancer: a randomized study. Elsevier 87–98(2004).

    [46] H. Dorota Halicka, Barbara Ardelt. 2-Deoxy-D-Glucose Enhances Sensitivity
    of Human Histiocytic Lymphoma U937 Cells to Apoptosis Induced by Tumor
    Necrosis Factor. Cancer Res, 55; 44(1995).
    [47] Issam Ben Sahra. The combination of metformin and 2-deoxyglucose
    inhibits autophagy and induces AMPK-dependent apoptosis in prostate
    cancer cells. Autophagy 6:5, 670-671(2010).
    [48] Zhou, G., Myers, R., et al. Role of AMP-activated protein kinase in
    mechanism of metformin action. J Clin Invest., 108, 1167-1174(2001).
    [49] Isaam Ben Sahra, Claire Regazzetti. Metformin, Independent of AMPK,
    Induces mTOR Inhibition and Cell-Cycle Arrest through REDD10. AACR ,
    3,4366-4372.(2011).
    [50] S G Arbuck, H O Douglass. Etoposide pharmacokinetics in patients with
    normal and abnormal organ function. JCO , 1690-1695(1986).
    [51] Drissi, R., Dubois, M L., et al. Quantitative proteomics reveals dynamic
    interactions of the MCM complex in the cellular response to etoposide
    induced DNA damage. Molecular & Cellular proteomics ,14, 2002-2013
    (2015).
    [52] Yao, T., Cohen, R., et al. A cryptic protease couples deubiquitination and
    degradation by the proteasome. Nature ,419, 403-407(2002).
    [53] Nanduri, B., Suvarnapunya AE., et al. Deubiquitinating enzymes as
    promising drug targets for infectious diseases. Curr Pharm Des.
    19(18),3234-3247(2013).

    [54] Yang, Y., Kitagaki, J., et al. Inhibitors of Ubiquitin-Activating Enzyme (E1),
    a New Class of Potential Cancer Therapeutics. Cancer Res, 67 ,
    9472-9481(2007).
    [55] Huang , H, Ceccarelli , DF., et al. E2 enzyme inhibition by stabilization of a
    low-affinity interface with ubiquitin. Nat Chem Biol. 10(2),156-163(2014).
    [56] Ambrus Toth, Philip Nickson. Differential Regulation of Cardiomyocyte
    Survival and Hypertrophy by MDM2, an E3 Ubiquitin Ligase. The Journal of
    Biological Chemistry, 281, 3679-3689(2005)
    [57] Ute M. Moll, Oleksi Petrenko. The MDM2-p53 Interaction. Mol Cancer
    Res ,1;1001-1008(2003).
    [58] Robert C. Kane, Peter F. Bross. Velcade®: U.S. FDA Approval for the
    Treatment of Multiple Myeloma Progressing on Prior Therapy. The
    Oncologist. 508-513(2003)
    [59] Richardson, P., Briemberg, H., et al. Frequency, Characteristics, and
    Reversibility of Peripheral Neuropathy During Treatment of Advanced
    Multiple Myeloma With Bortezomib. JCO , 19 , 3113-3120 (2006).
    [60] Richardson, P., Sonneveld, P., et al. Bortezomib or High-Dose
    Dexamethasone for Relapsed Multiple Myeloma. N Engl J
    Med ,352,2487-2498(2005).
    [61] Bridget N. Fahy. Targeting BCL-2 overexpression in various human
    malignancies through NF-κB inhibition by the proteasome inhibitor
    bortezomib. Cancer Chemotherapy and Pharmacology. 46-54(2005).

    下載圖示 校內:2020-08-31公開
    校外:2020-08-31公開
    QR CODE