簡易檢索 / 詳目顯示

研究生: 梁興宇
Liang, Sing-Yu
論文名稱: 電動低溫物流車輛路線問題之實證探討
An Empirical Study of the Electric Vehicle Routing Problem for Low-Temperature Logistics
指導教授: 呂執中
Lyu, Jr-Jung
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 52
中文關鍵詞: 低溫物流補電電動車品質損壞電動車路線問題
外文關鍵詞: Low-temperature Logistics, Electric Vehicles, VRP, Quality Decay
相關次數: 點閱:43下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著溫室效應的加劇,全球氣溫屢創新高,嚴重影響生態、社會、經濟、健康各方面,其中運輸是主要的溫室氣體排放者之一,因此各國政府陸續推廣電動車以達到減少排放之目的。對低溫物流業者來說,由於要保持溫度以避免產品品質之耗損,車輛比一般常溫車輛更消耗能源。當業者欲導入電動車取代傳統物流車進行配送時,所安排之派送路線,需考慮車輛之充電需求。本研究的目的是提出一個數學模型,旨在最小化與低溫物流電動汽車路線問題相關的運輸成本。限制式中考慮包括車容量限制及補電策略,並計算產品在運輸過程中的品質損壞程度。最後,通過一個案例來驗證所發展的模型之可行性。對於具有不同複雜程度的各種情境,所提出的模型被證明可以在可接受的品質水準下有效改善結果。在行駛距離方面可以改善13%至45%的幅度,運輸成本方面可以改善19%至35%的幅度,總時間方面可以改善1%至38%的幅度,驗證本研究模型的有效性。最後輔以所選擇的三項影響產品品質之因子進行敏感度分析,探討各因子不同水準對運輸成本與品質損壞程度的影響,根據敏感度分析的結果顯示,對於搬運速率、行駛速度和氣溫溫度三個影響產品品質之因子,溫度和搬運速率對產品品質有顯著影響。換言之,當氣溫較低時,產品保持在較好的品質水準。但是當溫度升至 25 至 30 攝氏溫度之間時,產品的最低品質水準分別只有為 48% 和 33%。當搬運速率從75 kg/min提高到150 kg/min時,產品的平均品質水準提高了6%,最低品質水準從61%提高到77%。該模型可作為低溫物流企業欲採用電動物流車進行物流運輸的決策依據。

    The relentless, continuing climate change and global warming, increasing occurrences and intensification of extreme events, and the ensuing losses and damage are affecting the global economy, society, and individuals. The transportation sector is one of the largest contributors to anthropogenic greenhouse gas emissions. Governments of various countries have been promoting electric vehicles to achieve the goal of reducing emissions. Since it is necessary to maintain the temperature of some products being delivered to avoid deterioration of product quality, an electric vehicle would consume more energy than a conventional vehicle during transportation of products. When a company plans to adopt electric vehicles to replace conventional vehicles for the delivery of products, the charging requirements of these vehicles must be taken into consideration when determining the scheduled delivery route.
    The aim of this study is to present a mathematical model intended to minimize the transportation costs related to the low-temperature logistics electric vehicle routing problem. Among the constraints, there are limited vehicle freight capacities and partial recharging, and the quality decay of the product during transportation. Finally, a case is used to verify the feasibility of the developed model. For various scenarios with different degrees of complexity, the proposed model was shown to effectively improve the results under acceptable quality levels. The driving distance was improved by 13% to 45%; the transportation cost was improved by 19% to 35%, and the total time was improved by 1% to 38%. Finally, based on statistical analysis, for the unloading rate, driving speed, and outside temperature three factors, temperature and unloading rate significantly impacted product quality. That is, when the outside temperature was low, the product was maintained at a better quality level. But when the temperature rose to between 25 and 30 degrees Celsius, the minimum quality level of the product was only 48% and 33%, respectively. When the unloading rate was increased from 75 kg/min to 150 kg/min, the average quality level of the product increased by 6%, and the minimum quality level increased from 61% to 77%. The proposed model could serve as a decision basis for low-temperature logistics enterprises when adopting electric vehicles for logistics transportation.

    摘要 I Extended Abstract II 致謝 IX 圖目錄 XII 表目錄 XIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 研究限制與範圍 3 1.4 論文架構 4 第二章 文獻回顧 5 2.1 低溫物流產業現況 5 2.2 冷鏈車輛路線問題 10 2.2.1 運輸成本 11 2.2.2 品質損壞 12 2.3 電動車輛路線問題(E-VRP) 14 2.3.1 補電 16 2.4 本章小結 17 第三章 模式建構 18 3.1 研究問題描述 18 3.2 數學模型與限制式定義 19 3.2.1 研究假設與符號定義 19 3.2.2 模型建構 21 3.3 本章小節 27 第四章 實證分析 28 4.1 資料與參數設定 29 4.1.1 顧客資料 29 4.1.2 產品參數設定 30 4.1.3 電動車參數設定 31 4.2 求解模型 32 4.2.1 情境一求解 32 4.2.2 情境二求解 35 4.2.3 情境三求解 38 4.3 敏感度分析 43 4.3.1 搬運速率 43 4.3.2 車輛行駛速率 44 4.3.3 環境氣溫溫度 45 第五章 結論與建議 47 5.1 研究結論 47 5.2 未來研究方向 48 參考文獻 49

    Awad, M., Ndiaye, M., & Osman, A. (2020). Vehicle routing in cold food supply chain logistics: a literature review. The International Journal of Logistics Management.
    Bamakan, S. M. H., Moghaddam, S. G., & Manshadi, S. D. (2021). Blockchain-enabled pharmaceutical cold chain: applications, key challenges, and future trends. Journal of Cleaner Production, 127021.
    Bishara, R. H. (2006). Cold chain management–an essential component of the global pharmaceutical supply chain. American Pharmaceutical Review, 9(1), 105-109.
    Braekers, K., Ramaekers, K., & Van Nieuwenhuyse, I. (2016). The vehicle routing problem: State of the art classification and review. Computers & Industrial Engineering, 99, 300-313.
    Dantzig, G. B., & Ramser, J. H. (1959). THE TRUCK DISPATCHING PROBLEM. Management Science, 6(1), 80-91.
    Desaulniers, G., Errico, F., Irnich, S., & Schneider, M. (2016). Exact algorithms for electric vehicle-routing problems with time windows. Operations research, 64(6), 1388-1405.
    Erdelić, T., & Carić, T. (2019). A survey on the electric vehicle routing problem: variants and solution approaches. Journal of Advanced Transportation, 2019.
    Faiz, T. I., Vogiatzis, C., & Noor-E-Alam, M. (2019). A column generation algorithm for vehicle scheduling and routing problems. Computers & Industrial Engineering, 130, 222-236.
    Felipe, Á., Ortuño, M. T., Righini, G., & Tirado, G. (2014). A heuristic approach for the green vehicle routing problem with multiple technologies and partial recharges. Transportation Research Part E: Logistics and Transportation Review, 71, 111-128.
    Fikar, C. (2018). A decision support system to investigate food losses in e-grocery deliveries. Computers & Industrial Engineering, 117, 282-290.
    Flood, M. M. (1956). The traveling-salesman problem. Operations research, 4(1), 61-75.
    Hanson, C. M., George, A. M., Sawadogo, A., & Schreiber, B. (2017). Is freezing in the vaccine cold chain an ongoing issue? A literature review. Vaccine, 35(17), 2127-2133.
    Hiermann, G., Puchinger, J., Ropke, S., & Hartl, R. F. (2016). The electric fleet size and mix vehicle routing problem with time windows and recharging stations. European Journal of Operational Research, 252(3), 995-1018.
    Hsiao, Y.-H., Chen, M.-C., & Chin, C.-L. (2017). Distribution planning for perishable foods in cold chains with quality concerns: Formulation and solution procedure. Trends in food science & technology, 61, 80-93.
    Ji, Y., Yang, H., & Zhou, Y. (2015). Vehicle routing problem with simultaneous delivery and pickup for cold-chain logistics. Paper presented at the 2015 International Conference on Modeling, Simulation and Applied Mathematics.
    Keskin, M., & Çatay, B. (2016). Partial recharge strategies for the electric vehicle routing problem with time windows. Transportation Research Part C: Emerging Technologies, 65, 111-127.
    Keskin, M., & Çatay, B. (2018). A matheuristic method for the electric vehicle routing problem with time windows and fast chargers. Computers & Operations Research, 100, 172-188.
    Keskin, M., Laporte, G., & Çatay, B. (2019). Electric vehicle routing problem with time-dependent waiting times at recharging stations. Computers & Operations Research, 107, 77-94.
    Liu, G., Hu, J., Yang, Y., Xia, S., & Lim, M. K. (2020). Vehicle routing problem in cold Chain logistics: A joint distribution model with carbon trading mechanisms. Resources, Conservation and Recycling, 156, 104715.
    Macrina, G., Laporte, G., Guerriero, F., & Pugliese, L. D. P. (2019). An energy-efficient green-vehicle routing problem with mixed vehicle fleet, partial battery recharging and time windows. European Journal of Operational Research, 276(3), 971-982.
    Macrina, G., Pugliese, L. D. P., Guerriero, F., & Laporte, G. (2019). The green mixed fleet vehicle routing problem with partial battery recharging and time windows. Computers & Operations Research, 101, 183-199.
    Martínez-Lao, J., Montoya, F. G., Montoya, M. G., & Manzano-Agugliaro, F. (2017). Electric vehicles in Spain: An overview of charging systems. Renewable and Sustainable Energy Reviews, 77, 970-983.
    Marucheck, A., Greis, N., Mena, C., & Cai, L. (2011). Product safety and security in the global supply chain: Issues, challenges and research opportunities. Journal of operations management, 29(7-8), 707-720.
    Matthias, D. M., Robertson, J., Garrison, M. M., Newland, S., & Nelson, C. (2007). Freezing temperatures in the vaccine cold chain: a systematic literature review. Vaccine, 25(20), 3980-3986.
    Mercier, S., Villeneuve, S., Mondor, M., & Uysal, I. (2017). Time–temperature management along the food cold chain: A review of recent developments. Comprehensive Reviews in Food Science and Food Safety, 16(4), 647-667.
    Miles, J., & Potter, S. (2014). Developing a viable electric bus service: The Milton Keynes demonstration project. Research in Transportation Economics, 48, 357-363.
    Montoya, A., Guéret, C., Mendoza, J. E., & Villegas, J. G. (2017). The electric vehicle routing problem with nonlinear charging function. Transportation Research Part B: Methodological, 103, 87-110.
    Nakandala, D., Lau, H., & Zhang, J. (2016). Cost-optimization modelling for fresh food quality and transportation. Industrial Management & Data Systems.
    Organization, W. H. (2006). Temperature sensitivity of vaccines. Retrieved from
    Rong, A., Akkerman, R., & Grunow, M. (2011). An optimization approach for managing fresh food quality throughout the supply chain. International Journal of Production Economics, 131(1), 421-429.
    Schiffer, M., & Walther, G. (2017). The electric location routing problem with time windows and partial recharging. European Journal of Operational Research, 260(3), 995-1013.
    Schneider, M., Stenger, A., & Goeke, D. (2014). The Electric Vehicle-Routing Problem with Time Windows and Recharging Stations. Transportation Science, 48(4), 500-520.
    Song, B. D., & Ko, Y. D. (2016). A vehicle routing problem of both refrigerated-and general-type vehicles for perishable food products delivery. Journal of food engineering, 169, 61-71.
    Stellingwerf, H. M., Groeneveld, L. H. C., Laporte, G., Kanellopoulos, A., Bloemhof, J. M., & Behdani, B. (2021). The quality-driven vehicle routing problem: Model and application to a case of cooperative logistics. International Journal of Production Economics, 231, 107849.
    Taoukis, P. S., Gogou, E., Tsironi, T., Giannoglou, M., Dermesonlouoglou, E., & Katsaros, G. (2016). Food cold chain management and optimization. In Emerging and traditional technologies for safe, healthy and quality food (pp. 285-309): Springer.
    Wen, M., Linde, E., Ropke, S., Mirchandani, P., & Larsen, A. (2016). An adaptive large neighborhood search heuristic for the Electric Vehicle Scheduling Problem. Computers & Operations Research, 76, 73-83.
    Yue, J., Liu, L., Li, Z., Li, D., & Fu, Z. (2013). Improved quality analytical models for aquatic products at the transportation in the cold chain. Mathematical and Computer Modelling, 58(3-4), 474-479.
    Zhang, Y., & Chen, X. (2014). An optimization model for the vehicle routing problem in multi-product frozen food delivery. Journal of applied research and technology, 12(2), 239-250.
    The Boston Consulting Group (2018). Tackling the 1.6-Billion-Ton Food Loss and Waste Crisis. (https://www.bcg.com/publications/2018/tackling1.6-billion-ton-food-loss-and-waste-crisis.aspx.)
    Semi | Tesla (https://www.tesla.com/semi)

    下載圖示 校內:2024-09-09公開
    校外:2024-09-09公開
    QR CODE