簡易檢索 / 詳目顯示

研究生: 游智凱
Yu, Chih-Kai
論文名稱: Ge-doped In2O3和In2Ge2O7奈米線的調控生長及光學性質研究
Tunable growth and optical properties of Ge-doped In2O3 nanowires and In2Ge2O7 nanowires
指導教授: 林文台
Lin, Wen-Tai
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 89
中文關鍵詞: 調控生長Ge摻雜In2O3奈米線In2Ge2O7奈米線PL光譜光學能隙
外文關鍵詞: tunable growth, Ge-doped In2O3 nanowires, In2Ge2O7 nanowires, photoluminescence spectrum, optical bandgap
相關次數: 點閱:78下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用熱碳還原法在溫度550-750℃,以Ar為載流氣體生長Ge摻雜In2O3奈米線和In2Ge2O7奈米線並藉由調整Ge/In2O3粉末重量比例作為參數,調控生長Ge摻雜In2O3奈米線和In2Ge2O7奈米線。Ge/In2O3粉末重量比例範圍0.1-0.3%生長鍺摻雜氧化銦奈米線,0.4-10%鍺摻雜氧化銦奈米線和In2Ge2O7奈米線會混合生長,當Ge/In2O3粉末重量比例為10%只有In2Ge2O7奈米線生長。鍺摻雜氧化銦奈米線和In2Ge2O7奈米線生長機制皆遵循自我催化VLS機制。隨著氧化銦奈米線鍺含量增加,誘發PL光譜和光學能隙往高能量位移。此現象可以用壓縮應力在氧化奈米線所造成的影響和Burstein –Moss effect來解釋。

    The tunable growth of Ge-doped In2O3 nanowires (NWs) and In2Ge2O7 (IGO) NWs was realized in flowing Ar at 550-750˚C by modulating the relative weight of Ge/In2O3 powders with the carbothermal reduction method. Ge-doped In2O3 NWs and a mixture of Ge-doped In2O3 and IGO NWs were grown with the weight ratio of Ge/In2O3 powders in the range of 0.1-0.3% and 0.4-10%, respectively, while with that above 10% only IGO NWs were observed. The growth of both Ge-doped In2O3 and IGO NWs followed the self-catalytic vapor-liquid-solid process. The Ge-doping induced a blueshift in the photoluminescence spectrum and optical bandgap of In2O3 NWs with the extent increasing with the Ge content In2O3 NWs. This result can be explained in terms of the compressive stress yielded in the Ge-doped In2O3 NWs and the Burstein –Moss effect.

    中文摘要 I Abstract II 致謝 III 目錄 V 圖目錄 IX 第一章 奈米材料簡介 1 1.1前言 1 1.2奈米材料 1 1.3奈米表面效應 2 1.4量子侷限效應 4 1.5量子穿隧效應 5 1.6一維奈米材料 5 第二章 文獻回顧 7 2.1氧化銦材料之應用 7 太陽能電池 7 平面顯示器 8 氣體感測 8 熱反射器 9 有機發光二極體 9 2.2氧化銦結構及特性 10 晶體結構 10 氧化銦各方向生長速率 10 光學性質 11 Burstein-Moss(BM)shift 12 導電性質 12 鍺摻雜氧化銦薄膜 14 2.3 In2Ge2O7 15 晶體結構 15 2.4氧化銦奈米線製備方法 16 熱蒸鍍法(thermal evaporation) 16 熱碳還原法(carbothermal reduction) 18 化學氣相沉積法(chemical vapor deposition) 19 水熱法(solvothermal) 20 雷射蒸鍍法(laser ablation) 21 模板輔助(template-assisted) 21 溶膠-凝膠(sol-gel) 22 2.5奈米線生長機制 23 Vapor-Liquid-Solid(VLS) 24 Self-catalyzed VLS 25 Vapor-Solid(VS) 27 Solution-Liquid-Solid(SLS) 27 2.6 研究動機 29 2.7儀器原理 30 2.7.1 掃瞄式電子顯微鏡(Scanning Electron Microscop,SEM) 30 2.7.2 低掠角X光繞射儀(Grazing Incidence X-ray Diffractometer,GID) 31 2.7.3 穿透式電子顯微鏡(Transmission Electron Microscope,TEM) 32 2.7.4 X光能量散佈分析儀(Energy Dispersive X-ray Spectrometer,EDS) 33 2.7.5 光激發光譜分析(Photoluminescence,PL) 34 2.7.6紫外光可見光(UV-vis)光譜儀 35 第三章 實驗步驟與方法 37 3.1 實驗設備及步驟 37 3.1.1 Ge摻雜In2O3奈米線試片製備 37 3.1.2 In2Ge2O7奈米線試片製備 38 3.2 基板製備與清洗 39 3.2.1基板製備與清洗 39 3.3 TEM試片製備 39 3.3.1 TEM試片製備 39 3.4 實驗分析 40 3.4.1掃瞄式電子顯微鏡分析 40 3.4.2 低掠角X光繞射分析 40 3.4.3 穿透式電子顯微鏡分析 40 3.4.4 光激發光譜量測 41 3.3.5 紫外光可見光(UV-vis)光譜儀 41 第四章 結果與討論 42 4.1 Ge摻雜In2O3奈米線的生長及光學性質 42 4.1.1Ge摻雜In2O3奈米線的生長 42 4.1.2Ge摻雜In2O3奈米線生長機制 42 4.1.3Ge粉末量對Ge摻雜In2O3奈米線生長的影響 43 4.1.4Ge摻雜In2O3奈米線之光學性質 45 4.1.4.1 PL光譜 45 4.1.4.2 UV-vis光譜 47 4.2 In2Ge2O7奈米線的生長及光學性質 49 第五章 結語 51 參考文獻 53 附錄 88 In2O3 XRD繞射圖譜 88 In2Ge2O7 XRD繞射圖譜 89

    1.R. Feynman, “Plenty of Room at the Bottom”, APS Annual Meeting (1959)2.K. E. Drexler , “Engines of Creation The Coming Era of Nanotechnology”, Anchor Books, New York (1986)
    3.盧永坤, “奈米科技概論”, 滄海書局 (2005)
    4.劉仲明、郭東瀛, “奈米材料”, 經濟部工業局 (2002)
    5.李世光, “奈米科學與技術導論”, 經濟部工業局 (2002)
    6.R. Kubo, J. Phys. Soc. Jpn. 17, 975 (1962)
    7.Y. Wang, N. Herron, J. Phys. Chem. 95, 525 (1991)
    8.F. Zeng, X. Zhang, J. Wang, L. Wang, and L. Zhang, Nanotechnology 15, 596 (2004)
    9.馮榮豐、陳錫添, “奈米工程概論”, 全華科技 (2004)
    10.吳季珍、陳貴賢, “一維奈米材料的研究”, 物理雙月刊, 廿三卷六期 (2001)
    11.馬遠榮, “低維奈米材料”, 科學發展, 382期 (2004)
    12.K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Harahuchi, M. Kohuchi, and H. Kakibayash, J. Appl. Phys. 77(2), 447 (1995)
    13.G. S. Cheng, L. D. Zhang, S. H. Chen, Y. Li, L. Li, X. G. Zhu, Y. Zhu, G. T. Fei, and Y. Q. Mao, J. Mater. Res. 15, 347 (2000)
    14.Y. Li, Appl. Phys. Lett. 76(15) , 2011 (2000)
    15.J. Hu, G.W. Meng, L. D. Zhang, and F. Phillipp, Acc. Chem. Res. 32, 435 (1999)
    16.W. B. Choi, D. S. Chung, Appl. Phys. Lett. 75, 3129 (1999)
    17.T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. L. Cheung, C. M. Liebe, Science 289, 94 (2000)
    18.J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, H. Dai, Science 287, 622 (2000)
    19.J. Kong, G. Chapline, H. Dav, Adv. Mater. 13, 1384 (2001)
    20.C. L. Cheung, J. H. Hafner, T. W. Odom, K. Kim, and C. M. Lieber, Appl. Phys. Lett. 76, 3136 (2000)
    21.X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, Nature 409, 66 (2001)22.C. Liang, G. Meng, Y. Lei, F. Phillipp, and L. Zhang, Adv. Mater. 13, 1330 (2001)
    23.X. Li, M. W. Wanlass, T. A. Gessert, K. A. Emery, and T. J. Coutts, Appl. Phys. Lett. 54, 2674 (1989)
    24.C. Grivas, S. Mailis, R. W. Eason, E. Tzamali, and N. A. Vainos, Appl. Phys. A 74, 457 (2002)
    25.J. Tamaki, C. Naruo, Y. Yamamoto, and M. Matsuoka, Sensors Actuators B 83, 190 (2002)
    26.M. Liess, Thin Solid Films 410, 183 (2002)
    27.A. G. U. Perera, H. C. Liu, and M. H. Francombe, Semiconductor Optical and Electro-Optical Devices, Academic Press, London, UK (2000)
    28.I. Hamberg, and C. G. Granqvist, Appl. Phys. Lett. 44, 721 (1984)
    29.Y. Hu, J. Li, Vacuum Techn Appl. 2, 36 (2000)
    30.T. Schuler, and M. A. Aegerter, Thin Solid Films 351, 125 (1999)
    31.Z. Fan, Physics 29(11), 688 (2000)
    32.J. Miller Anthony, A. Hatton Ross, G. Y. Chen, and P. Silva S. Ravi, Appl Phys Lett. 90, 023105 (2007)
    33.楊明輝, “金屬氧化物透明導電材料的基本原理”, 工業材料179 (2001)
    34.賴明雄、溫志中, 工業材料179 145 (2001)
    35.P. B. Weise, The Journal of Chemical Physics 21 (9) 1531 ( 1953)
    36.H. Windischmann, P. Mark, Journal of the electrochemical society 126(4), 627 ( 1979)
    37.D. Zhang, C. Li, S. Han, X. Liu, T. Tang, W. Jin, C. Zhou, Appl. Phys. Lett. 82, 112 (2003)
    38.J. Kong, “Nanotube Molecular Wires as Chemical Sensors” Science 287, 622 (2000)
    39.M. Law, H. Kind, B. Messer, F. Kim, P. Yang, Angew. Chem. Int. Ed. 41, 2405 (2002)
    40.C. Li, D. Zhang, X. Liu, S. Han, T. Tang, J. Han, C. Zhou, Appl. Phys. Lett. 82, 1613 (2003)
    41.M. Bender, N. Katsarakis, E. Gagaoudakis, E. Hourdakis, E. Douloufakis, V Cimalla, and G. Kiriakidis, J. Appl. Phys. 90, 5382 (2001)
    42.廖建勛, “有機半導體材料與元件” 化工資訊月刊14(4) 58 (2000)
    43.Wyckoff, and W. G. Ralph, “Crystal Structure”, Vol. 2 Chap. V, P.4 (1986)44.K. Hanamoto, M. Sasaki, K. Miyatani, C. Kaito, H. Miki, and Y. Nakayama, Nuclear Instruments and Methods in Physics Research B 173, 287 (2001)
    45.A. Kompany, H. A. Rahnamaye Aliabad, S. M. Hosseini, J. Baedi, phys. stat. sol. (b) 244(2) 619 (2007)
    46.W. Dewit , J. Crystal Growth 12, 183 (1972)
    47.Y. Li, Y. Bando, D. Golberg, Adv.Mater. 15, 581 (2003)
    48.Y. F. Hao, G. Meng, C. Ye, L. Zhang, Cryst. Growth Des. 5 1617 ( 2005 )
    49.C. H. Liang, G. W. Meng, Y. Lei, F. Phillipp, L. D. Zhang, Adv. Mater. 13 1330 (2001)
    50.E. Burstein, Phys. Rev. 93, 632 (1954)
    51.T. S. Moss, Proc. Phys. Soc. (London) B76, 775(1954)
    52.I. Hamberg, C. G. Granqvist, K. F. Berggren, B. E. Sernelius, and L. Engström, Phys. Rev. B 30 3240 (1984)
    53.I. Hambergend, and C. G. Granqvist, J. Appl. Phys. 60, R123(1996)
    54.P. Kofstad, “Nonstoichiometry ,Diffusion, and Electrical Conductivity in Binary Metal Oxides”, 18 (1972)
    55.C. M. Ghimbeu, M. Lumbreras, M. Siadat, J. Schoonman, Materials Chemistry and Physics 114, 933 (2009)
    56.M. Mizuno, and T. Miyamoto, Jpn. J. Appl. Phys. 39, 1849 (2000)
    57.T. Maruyama, and T. Tago, Appl. Phys. Lett. 64, 1395 (1994)
    58.G. Campet, S. D. Han, S. J. Wen, M. C. R. Shastry, B. Chaminade, E. Marquestaut, J. Portier, and P. Dordor, Mater. Sci. Eng. B 22, 274 (1994)
    59.S. J. Wen, G. Campet, J. Portier, G. Couturier, and J. B. Goodenough, Mater. Sci. Eng. B 14, 115 (1992)
    60.G. Campet, S. D. Han, S. J. Wen, J. P. Manaud, J. Portier, Y. Xu, and Salardenne, Mater. Sci. Eng. B 19, 285 (1993)
    61.S. J. Wen, Doctoral Thesis, University of Bordeaux (1992)
    62.M. J. Hogan, A. W. Brinkman, T. Hashemi, Appl.Phys. Lett. 72, 3077 (1998)63.G. Z. Liu, S. T. Zheng, G. Y. Yang, Angew. Chem. Int. Ed. 46, 2827 (2007)
    64.S. S. Bayya, G. D. Chin, J. S. Sanghera, I. D. Aggarwal, Opt. Express 14, 11687 (2006)
    65.J. Zhan, Y. Bando, J. Hu, L. Yin, X. Yuan, T. Sekiguchi, and D. Golberg, Angew. Chem. 118, 234 (2006)
    66.Y. Su, S. Li, L. Xu, Y. Chen, Q. Zhou, B. Peng, S. Yin, X. Meng, X. Liang, and Y. Feng, Nanotechnology 17, 6007 (2006)
    67.C. Yan, T. Zhang, and P. S. Lee, Cryst. Growth. Des. 8, 3144 (2008)
    68.C. Yan, N. Singh, and P. S. Lee, Cryst. Growth. Des. 9, 3697 (2009)
    69.V. I. Vavilin, E. A. Gladkikh, E. A.Soldatov , E. A.Kuzmin, V. V. Ilyukhin, N. V. Belov, Soviet physics Doklady 18, 761 (1973)
    70.I. Rosales, E. Chavira, E. Orozco, and L. Bucio, Acta Cryst. E65 i49 (2009)
    71.T. Gao, T. Wang, J. Cryst. Growth 290, 660 ( 2006 )
    72.M. C. Johnson, S. Aloni, D. E. McCready, E. D. Bourret-Courchesne, Cryst. Growth Des. 6, 1936 ( 2006 )
    73.J. Zhang, X. Qing, F. Jiang, and Z. Dai, Chemical Physics Letters. 371, 311 (2003)
    74.Y. F. Hao, G. Meng, C. Ye, L. Zhang, Cryst. Growth Des. 5, 1617 ( 2005 )
    75.X. C. Wu, J. M. Hong, Z. J. Han, Y. R. Tao, Chem. Phys. Lett. 373, 28 ( 2003 )
    76.K. C. Kam, F. L. Deepak, A. K. Cheetham, C. N. R. Rao, Chem. Phys. Lett. 397 329 ( 2004 )
    77.X. S. Peng, Y. W. Wang, J. Zhang, X. F. Wang, L. X. Zhao, G. W.Meng, L. D. Zhang, Appl. Phys. A-Mater. 74, 437 ( 2002 )
    78.J. S. Jeong, J. Y. Lee, C. J. Lee, S. J. An, G. C. Yi, Chem. Phys. Lett. 384, 246 (2004)
    79.Y. Li, Y. Bando, D. Golberg, Adv.Mater. 15, 581 (2003)
    80.N. Singh, T. Zhang, and P. S. Lee, Nanotechnology 20, 195605 (2009)
    81.莊達人, “VLSI 製造技術”, 高立圖書有限公司 (1996)
    82.J. Xu, Y. Chen, J. Shen, Materials Letters 62, 1363 (2008)
    83.C. Chen, D. Chen, X. Jiao, and C. Wang, Chem. Commun. 4632 (2006)
    84.T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, Chem. Phys. Lett. 243, 49 (1995)
    85.C. Li, D. Zhang, S. Han, X. Liu, T. Tang, Adv. Mater. 15, 143 (2003)
    86.M. J. Zheng, L. D. Zhang, G. H. Li, X. Y. Zhang, and X. F. Wang, Appl. Phys. Lett 79 , 839 ( 2001 )
    87.M. Zheng, L. Zhang, X. Zhang, J. Zhang, and Guanghai, Chemical Physics Letters 334, 298 (2001)
    88.Z. X. Cheng, X. B. Dong, Q. Y. Pan , J. C. Zhang , X. W. Dong, Materials Letters 60, 3137 (2006)
    89.C. N. R. Rao, F. L. Deepak, G. Gundiah, and A. Govindaraj, Prog. Solid State Chem. 31, 5 (2003)
    90.R.S. Wagner, and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964)
    91.Y. Wu, P. Yang, J. Am. Chem. Soc. 123, 3165 (2001)
    92.C. Geng, Y. Jiang, Y. Yao, Adv. Funct. Mater. 14(6), 589 (2004)
    93.Q. Wan, Z. T. Song, S. L. Feng, and T. H.Wang, Appl. Phys. Lett. 85, 4759 (2004)
    94.D. Calestani, M. Zha, A. Zappettini, L. Lazzarini, L. Zanotti, Chemical Physics Letters 445, 251 ( 2007)
    95.Z. R. Dai, Z. W.Pan, Z. L. Wang, Adv. Funct. Mater. 13, 9 (2003)
    96.J. M. Blakely, K. A. Jackson, J. Chem. Phys. 37, 428 (1962)
    97.Z. W. Pan, Z. R. Dai, Z. L.Wang, Science 291, 1947 (2001)
    98.T.J.Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, Science 270, 1791 (1995)
    99.F. Wang, A. Dong, J. Sun, R. Tang, H. Yu, and W. E. Buhro, Inorg .Chem. 45, 7511 (2006)
    100.S. D. Dingman, N. P. Rath, P. D. Markowitz, P. C. Gibbons, W. E. Buhro, Angew. Chem. Int. Ed. 39, 1470 (2000)
    101.X. Lu, T. Hanrath, K. P. Johnston, and A. B. Korgel, Nano Lett. 3, 93 (2003)102.C. G. Granqvist, and A. Hultaker, Thin Solid Films 411, 1 (2002)
    103.T. Minami, Semicond. Sci. Technol. 20, S35 (2005)
    104.X. J. Huang, Y. K. Choi, Sens. and Actuators B122, 659 (2007)
    105.S. Y. Li, C. Y. Lee, P. Lin, and T. Y. Tseng, Nanotechnology 16, 451(2005)106.Q.Wan, E. N. Dattoli, W. Y. Fung, W. Guo, Y. Chen, X. Pan, and W. Lu, Nano Lett. 6,2909 (2006)
    107.H. J. Chun, Y. S. Choi, S. Y. Bae, H. C. Choi, and J. Park, Appl. Phys. Lett. 85, 461(2004)
    108.C. L.Hsin, J. H. He, and L. J. Chen, Appl. Phys. Lett. 88, 063111 (2006)
    109.Q. Wan, J. Huang, A. Lu, and J. Sun, J. Appl. Phys. 106, 024312 (2009)
    110.L. Liu, T. Zhang, S. Li, L. Wang, and Y. Tian, Mater. Lett. 63, 1975 (2009)
    111.J. Wang, B. Zou, S. Ruan, J. Zhao, Q. Chen, and F. Wu, Materials Letters 63, 1750(2009)
    112.汪建民等人, “材料分析”, 中國材料科學學會 (1998)
    113.郭正次、朝春光, “奈米結構材料科學”, 全華科技, 93年4月, Chap 5
    114.R. L. Weiher, and R. P. Ley, Journal of Applied Physics 37, 299 (1966)
    115.J.G. Sole, L.E. Bausa, D.Jaque, An Introduction to Optical Spectroscopy of Inorganic Solids, John Wiely &Sons Ltd (2005)
    116.Y. Q. Chen, J. Jiang, B. Wang, J. G. Hou, J. Phys. D Appl. Phys. 37, 3319 (2004)
    117.D. Bérardan, E. Guilmeau, A. Maignan, and B. Raveau, Solid State Communications 146, 97 (2008)
    118.R. D. Shannon, Acta Cryst. A32, 751 (1976)
    119.J. Yang, C. Lin, Z. Wang, and J. Lin, Inorg. Chem. 45 (22), 8973 (2006)
    120.M. S.Lee, W. C.Choi, E. K. Kim, C. K. Kim, S. K. Min, Thin Solid Films 1, 279(1996)
    121.G. Wang, J. Park, D. Wexler, M. S. Park, and J. H. Ahn, Inorg. Chem. 46 (12), 4778(2007)
    122.M. Mazzera, M. Zha, D. Calestani, A. Zappettini, L. Lazzarini, G. Salviati, L. Zanotti, Nanotechnology 18,
    355707 (2007)
    123.X. D. Pu, W. Z. Shen, Z. Q. Zhang, H. Ogawa, and Q. X. Guo, Appl. Phys. Lett. 88, 151904 (2006)
    124.A. B. M. Almamun Ashrafi, N. T. Binh, B. P. Zhang, and Y. Segawa, Appl. Phys. Lett. 84, 2814 (2004)
    125.M. E. I. Kurdi, H. Bertin, E. Martincis, M. de Kersauson, G. Fishman, S. Sauvage, A. Bosseboeuf, and P. Boucaud, Appl. Phys. Lett. 96, 041909 (2010)
    126.S. Rani, S. C. Roy, N. Kararand, M. C. Bhatnagar, Solid State Communications 141, 214 (2007)
    127.C. C. Hung, M. P. Chang, C. Y. Ho, C. K. Yu, and W. T. Lin, J. Electrochem. Soc. 157, K80 (2010)
    128.A. Walsh, J. L. F. Da Silva, S. H. Wei, C. Korber, A. Klein, F. F. J. Piper, A. DeMasi, K. E. Smith, G. Panaccione, P. Torelli, D. J. Payne, Bourlange, and R. G. Egdell, Phys. Rev. Lett. 100, 167402 (2008)
    129.P. D. C. King, T. D. Veal, D. J. Payne, A. Bourlange, R. G. Egdell, and C. F. McConville, Phys. Rev. Lett. 101, 116808 (2008)
    130.A. Bourlange, D. J. Payne, R. G. Egdell, J. S. Foord, P. P. Edwards, M. O. Jones, A. Schertel, P. J. Dobson, and J. L. Hutchison, Appl. Phys. Lett. 92, 092117 (2008)
    131.B. C. Mohanty, Y. H. Jo, D. H.Yeon, I. J. Choi, and Y. S. Cho, Appl. Phys. Lett. 95, 062103 (2009)
    132.T. P. Rao, M. C. S. Kumar, S. A. Angayarkanni, M. Ashok, J. Alloys Comp. 485, 413(2009)
    133.Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H. C. Luan, and L. C.Kimerling, Appl. Phys. Lett. 82, 2044 (2003)

    下載圖示 校內:2012-07-27公開
    校外:2012-07-27公開
    QR CODE