| 研究生: |
游智凱 Yu, Chih-Kai |
|---|---|
| 論文名稱: |
Ge-doped In2O3和In2Ge2O7奈米線的調控生長及光學性質研究 Tunable growth and optical properties of Ge-doped In2O3 nanowires and In2Ge2O7 nanowires |
| 指導教授: |
林文台
Lin, Wen-Tai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 調控生長 、Ge摻雜In2O3奈米線 、In2Ge2O7奈米線 、PL光譜 、光學能隙 |
| 外文關鍵詞: | tunable growth, Ge-doped In2O3 nanowires, In2Ge2O7 nanowires, photoluminescence spectrum, optical bandgap |
| 相關次數: | 點閱:78 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用熱碳還原法在溫度550-750℃,以Ar為載流氣體生長Ge摻雜In2O3奈米線和In2Ge2O7奈米線並藉由調整Ge/In2O3粉末重量比例作為參數,調控生長Ge摻雜In2O3奈米線和In2Ge2O7奈米線。Ge/In2O3粉末重量比例範圍0.1-0.3%生長鍺摻雜氧化銦奈米線,0.4-10%鍺摻雜氧化銦奈米線和In2Ge2O7奈米線會混合生長,當Ge/In2O3粉末重量比例為10%只有In2Ge2O7奈米線生長。鍺摻雜氧化銦奈米線和In2Ge2O7奈米線生長機制皆遵循自我催化VLS機制。隨著氧化銦奈米線鍺含量增加,誘發PL光譜和光學能隙往高能量位移。此現象可以用壓縮應力在氧化奈米線所造成的影響和Burstein –Moss effect來解釋。
The tunable growth of Ge-doped In2O3 nanowires (NWs) and In2Ge2O7 (IGO) NWs was realized in flowing Ar at 550-750˚C by modulating the relative weight of Ge/In2O3 powders with the carbothermal reduction method. Ge-doped In2O3 NWs and a mixture of Ge-doped In2O3 and IGO NWs were grown with the weight ratio of Ge/In2O3 powders in the range of 0.1-0.3% and 0.4-10%, respectively, while with that above 10% only IGO NWs were observed. The growth of both Ge-doped In2O3 and IGO NWs followed the self-catalytic vapor-liquid-solid process. The Ge-doping induced a blueshift in the photoluminescence spectrum and optical bandgap of In2O3 NWs with the extent increasing with the Ge content In2O3 NWs. This result can be explained in terms of the compressive stress yielded in the Ge-doped In2O3 NWs and the Burstein –Moss effect.
1.R. Feynman, “Plenty of Room at the Bottom”, APS Annual Meeting (1959)2.K. E. Drexler , “Engines of Creation The Coming Era of Nanotechnology”, Anchor Books, New York (1986)
3.盧永坤, “奈米科技概論”, 滄海書局 (2005)
4.劉仲明、郭東瀛, “奈米材料”, 經濟部工業局 (2002)
5.李世光, “奈米科學與技術導論”, 經濟部工業局 (2002)
6.R. Kubo, J. Phys. Soc. Jpn. 17, 975 (1962)
7.Y. Wang, N. Herron, J. Phys. Chem. 95, 525 (1991)
8.F. Zeng, X. Zhang, J. Wang, L. Wang, and L. Zhang, Nanotechnology 15, 596 (2004)
9.馮榮豐、陳錫添, “奈米工程概論”, 全華科技 (2004)
10.吳季珍、陳貴賢, “一維奈米材料的研究”, 物理雙月刊, 廿三卷六期 (2001)
11.馬遠榮, “低維奈米材料”, 科學發展, 382期 (2004)
12.K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Harahuchi, M. Kohuchi, and H. Kakibayash, J. Appl. Phys. 77(2), 447 (1995)
13.G. S. Cheng, L. D. Zhang, S. H. Chen, Y. Li, L. Li, X. G. Zhu, Y. Zhu, G. T. Fei, and Y. Q. Mao, J. Mater. Res. 15, 347 (2000)
14.Y. Li, Appl. Phys. Lett. 76(15) , 2011 (2000)
15.J. Hu, G.W. Meng, L. D. Zhang, and F. Phillipp, Acc. Chem. Res. 32, 435 (1999)
16.W. B. Choi, D. S. Chung, Appl. Phys. Lett. 75, 3129 (1999)
17.T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. L. Cheung, C. M. Liebe, Science 289, 94 (2000)
18.J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, H. Dai, Science 287, 622 (2000)
19.J. Kong, G. Chapline, H. Dav, Adv. Mater. 13, 1384 (2001)
20.C. L. Cheung, J. H. Hafner, T. W. Odom, K. Kim, and C. M. Lieber, Appl. Phys. Lett. 76, 3136 (2000)
21.X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, Nature 409, 66 (2001)22.C. Liang, G. Meng, Y. Lei, F. Phillipp, and L. Zhang, Adv. Mater. 13, 1330 (2001)
23.X. Li, M. W. Wanlass, T. A. Gessert, K. A. Emery, and T. J. Coutts, Appl. Phys. Lett. 54, 2674 (1989)
24.C. Grivas, S. Mailis, R. W. Eason, E. Tzamali, and N. A. Vainos, Appl. Phys. A 74, 457 (2002)
25.J. Tamaki, C. Naruo, Y. Yamamoto, and M. Matsuoka, Sensors Actuators B 83, 190 (2002)
26.M. Liess, Thin Solid Films 410, 183 (2002)
27.A. G. U. Perera, H. C. Liu, and M. H. Francombe, Semiconductor Optical and Electro-Optical Devices, Academic Press, London, UK (2000)
28.I. Hamberg, and C. G. Granqvist, Appl. Phys. Lett. 44, 721 (1984)
29.Y. Hu, J. Li, Vacuum Techn Appl. 2, 36 (2000)
30.T. Schuler, and M. A. Aegerter, Thin Solid Films 351, 125 (1999)
31.Z. Fan, Physics 29(11), 688 (2000)
32.J. Miller Anthony, A. Hatton Ross, G. Y. Chen, and P. Silva S. Ravi, Appl Phys Lett. 90, 023105 (2007)
33.楊明輝, “金屬氧化物透明導電材料的基本原理”, 工業材料179 (2001)
34.賴明雄、溫志中, 工業材料179 145 (2001)
35.P. B. Weise, The Journal of Chemical Physics 21 (9) 1531 ( 1953)
36.H. Windischmann, P. Mark, Journal of the electrochemical society 126(4), 627 ( 1979)
37.D. Zhang, C. Li, S. Han, X. Liu, T. Tang, W. Jin, C. Zhou, Appl. Phys. Lett. 82, 112 (2003)
38.J. Kong, “Nanotube Molecular Wires as Chemical Sensors” Science 287, 622 (2000)
39.M. Law, H. Kind, B. Messer, F. Kim, P. Yang, Angew. Chem. Int. Ed. 41, 2405 (2002)
40.C. Li, D. Zhang, X. Liu, S. Han, T. Tang, J. Han, C. Zhou, Appl. Phys. Lett. 82, 1613 (2003)
41.M. Bender, N. Katsarakis, E. Gagaoudakis, E. Hourdakis, E. Douloufakis, V Cimalla, and G. Kiriakidis, J. Appl. Phys. 90, 5382 (2001)
42.廖建勛, “有機半導體材料與元件” 化工資訊月刊14(4) 58 (2000)
43.Wyckoff, and W. G. Ralph, “Crystal Structure”, Vol. 2 Chap. V, P.4 (1986)44.K. Hanamoto, M. Sasaki, K. Miyatani, C. Kaito, H. Miki, and Y. Nakayama, Nuclear Instruments and Methods in Physics Research B 173, 287 (2001)
45.A. Kompany, H. A. Rahnamaye Aliabad, S. M. Hosseini, J. Baedi, phys. stat. sol. (b) 244(2) 619 (2007)
46.W. Dewit , J. Crystal Growth 12, 183 (1972)
47.Y. Li, Y. Bando, D. Golberg, Adv.Mater. 15, 581 (2003)
48.Y. F. Hao, G. Meng, C. Ye, L. Zhang, Cryst. Growth Des. 5 1617 ( 2005 )
49.C. H. Liang, G. W. Meng, Y. Lei, F. Phillipp, L. D. Zhang, Adv. Mater. 13 1330 (2001)
50.E. Burstein, Phys. Rev. 93, 632 (1954)
51.T. S. Moss, Proc. Phys. Soc. (London) B76, 775(1954)
52.I. Hamberg, C. G. Granqvist, K. F. Berggren, B. E. Sernelius, and L. Engström, Phys. Rev. B 30 3240 (1984)
53.I. Hambergend, and C. G. Granqvist, J. Appl. Phys. 60, R123(1996)
54.P. Kofstad, “Nonstoichiometry ,Diffusion, and Electrical Conductivity in Binary Metal Oxides”, 18 (1972)
55.C. M. Ghimbeu, M. Lumbreras, M. Siadat, J. Schoonman, Materials Chemistry and Physics 114, 933 (2009)
56.M. Mizuno, and T. Miyamoto, Jpn. J. Appl. Phys. 39, 1849 (2000)
57.T. Maruyama, and T. Tago, Appl. Phys. Lett. 64, 1395 (1994)
58.G. Campet, S. D. Han, S. J. Wen, M. C. R. Shastry, B. Chaminade, E. Marquestaut, J. Portier, and P. Dordor, Mater. Sci. Eng. B 22, 274 (1994)
59.S. J. Wen, G. Campet, J. Portier, G. Couturier, and J. B. Goodenough, Mater. Sci. Eng. B 14, 115 (1992)
60.G. Campet, S. D. Han, S. J. Wen, J. P. Manaud, J. Portier, Y. Xu, and Salardenne, Mater. Sci. Eng. B 19, 285 (1993)
61.S. J. Wen, Doctoral Thesis, University of Bordeaux (1992)
62.M. J. Hogan, A. W. Brinkman, T. Hashemi, Appl.Phys. Lett. 72, 3077 (1998)63.G. Z. Liu, S. T. Zheng, G. Y. Yang, Angew. Chem. Int. Ed. 46, 2827 (2007)
64.S. S. Bayya, G. D. Chin, J. S. Sanghera, I. D. Aggarwal, Opt. Express 14, 11687 (2006)
65.J. Zhan, Y. Bando, J. Hu, L. Yin, X. Yuan, T. Sekiguchi, and D. Golberg, Angew. Chem. 118, 234 (2006)
66.Y. Su, S. Li, L. Xu, Y. Chen, Q. Zhou, B. Peng, S. Yin, X. Meng, X. Liang, and Y. Feng, Nanotechnology 17, 6007 (2006)
67.C. Yan, T. Zhang, and P. S. Lee, Cryst. Growth. Des. 8, 3144 (2008)
68.C. Yan, N. Singh, and P. S. Lee, Cryst. Growth. Des. 9, 3697 (2009)
69.V. I. Vavilin, E. A. Gladkikh, E. A.Soldatov , E. A.Kuzmin, V. V. Ilyukhin, N. V. Belov, Soviet physics Doklady 18, 761 (1973)
70.I. Rosales, E. Chavira, E. Orozco, and L. Bucio, Acta Cryst. E65 i49 (2009)
71.T. Gao, T. Wang, J. Cryst. Growth 290, 660 ( 2006 )
72.M. C. Johnson, S. Aloni, D. E. McCready, E. D. Bourret-Courchesne, Cryst. Growth Des. 6, 1936 ( 2006 )
73.J. Zhang, X. Qing, F. Jiang, and Z. Dai, Chemical Physics Letters. 371, 311 (2003)
74.Y. F. Hao, G. Meng, C. Ye, L. Zhang, Cryst. Growth Des. 5, 1617 ( 2005 )
75.X. C. Wu, J. M. Hong, Z. J. Han, Y. R. Tao, Chem. Phys. Lett. 373, 28 ( 2003 )
76.K. C. Kam, F. L. Deepak, A. K. Cheetham, C. N. R. Rao, Chem. Phys. Lett. 397 329 ( 2004 )
77.X. S. Peng, Y. W. Wang, J. Zhang, X. F. Wang, L. X. Zhao, G. W.Meng, L. D. Zhang, Appl. Phys. A-Mater. 74, 437 ( 2002 )
78.J. S. Jeong, J. Y. Lee, C. J. Lee, S. J. An, G. C. Yi, Chem. Phys. Lett. 384, 246 (2004)
79.Y. Li, Y. Bando, D. Golberg, Adv.Mater. 15, 581 (2003)
80.N. Singh, T. Zhang, and P. S. Lee, Nanotechnology 20, 195605 (2009)
81.莊達人, “VLSI 製造技術”, 高立圖書有限公司 (1996)
82.J. Xu, Y. Chen, J. Shen, Materials Letters 62, 1363 (2008)
83.C. Chen, D. Chen, X. Jiao, and C. Wang, Chem. Commun. 4632 (2006)
84.T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, Chem. Phys. Lett. 243, 49 (1995)
85.C. Li, D. Zhang, S. Han, X. Liu, T. Tang, Adv. Mater. 15, 143 (2003)
86.M. J. Zheng, L. D. Zhang, G. H. Li, X. Y. Zhang, and X. F. Wang, Appl. Phys. Lett 79 , 839 ( 2001 )
87.M. Zheng, L. Zhang, X. Zhang, J. Zhang, and Guanghai, Chemical Physics Letters 334, 298 (2001)
88.Z. X. Cheng, X. B. Dong, Q. Y. Pan , J. C. Zhang , X. W. Dong, Materials Letters 60, 3137 (2006)
89.C. N. R. Rao, F. L. Deepak, G. Gundiah, and A. Govindaraj, Prog. Solid State Chem. 31, 5 (2003)
90.R.S. Wagner, and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964)
91.Y. Wu, P. Yang, J. Am. Chem. Soc. 123, 3165 (2001)
92.C. Geng, Y. Jiang, Y. Yao, Adv. Funct. Mater. 14(6), 589 (2004)
93.Q. Wan, Z. T. Song, S. L. Feng, and T. H.Wang, Appl. Phys. Lett. 85, 4759 (2004)
94.D. Calestani, M. Zha, A. Zappettini, L. Lazzarini, L. Zanotti, Chemical Physics Letters 445, 251 ( 2007)
95.Z. R. Dai, Z. W.Pan, Z. L. Wang, Adv. Funct. Mater. 13, 9 (2003)
96.J. M. Blakely, K. A. Jackson, J. Chem. Phys. 37, 428 (1962)
97.Z. W. Pan, Z. R. Dai, Z. L.Wang, Science 291, 1947 (2001)
98.T.J.Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, Science 270, 1791 (1995)
99.F. Wang, A. Dong, J. Sun, R. Tang, H. Yu, and W. E. Buhro, Inorg .Chem. 45, 7511 (2006)
100.S. D. Dingman, N. P. Rath, P. D. Markowitz, P. C. Gibbons, W. E. Buhro, Angew. Chem. Int. Ed. 39, 1470 (2000)
101.X. Lu, T. Hanrath, K. P. Johnston, and A. B. Korgel, Nano Lett. 3, 93 (2003)102.C. G. Granqvist, and A. Hultaker, Thin Solid Films 411, 1 (2002)
103.T. Minami, Semicond. Sci. Technol. 20, S35 (2005)
104.X. J. Huang, Y. K. Choi, Sens. and Actuators B122, 659 (2007)
105.S. Y. Li, C. Y. Lee, P. Lin, and T. Y. Tseng, Nanotechnology 16, 451(2005)106.Q.Wan, E. N. Dattoli, W. Y. Fung, W. Guo, Y. Chen, X. Pan, and W. Lu, Nano Lett. 6,2909 (2006)
107.H. J. Chun, Y. S. Choi, S. Y. Bae, H. C. Choi, and J. Park, Appl. Phys. Lett. 85, 461(2004)
108.C. L.Hsin, J. H. He, and L. J. Chen, Appl. Phys. Lett. 88, 063111 (2006)
109.Q. Wan, J. Huang, A. Lu, and J. Sun, J. Appl. Phys. 106, 024312 (2009)
110.L. Liu, T. Zhang, S. Li, L. Wang, and Y. Tian, Mater. Lett. 63, 1975 (2009)
111.J. Wang, B. Zou, S. Ruan, J. Zhao, Q. Chen, and F. Wu, Materials Letters 63, 1750(2009)
112.汪建民等人, “材料分析”, 中國材料科學學會 (1998)
113.郭正次、朝春光, “奈米結構材料科學”, 全華科技, 93年4月, Chap 5
114.R. L. Weiher, and R. P. Ley, Journal of Applied Physics 37, 299 (1966)
115.J.G. Sole, L.E. Bausa, D.Jaque, An Introduction to Optical Spectroscopy of Inorganic Solids, John Wiely &Sons Ltd (2005)
116.Y. Q. Chen, J. Jiang, B. Wang, J. G. Hou, J. Phys. D Appl. Phys. 37, 3319 (2004)
117.D. Bérardan, E. Guilmeau, A. Maignan, and B. Raveau, Solid State Communications 146, 97 (2008)
118.R. D. Shannon, Acta Cryst. A32, 751 (1976)
119.J. Yang, C. Lin, Z. Wang, and J. Lin, Inorg. Chem. 45 (22), 8973 (2006)
120.M. S.Lee, W. C.Choi, E. K. Kim, C. K. Kim, S. K. Min, Thin Solid Films 1, 279(1996)
121.G. Wang, J. Park, D. Wexler, M. S. Park, and J. H. Ahn, Inorg. Chem. 46 (12), 4778(2007)
122.M. Mazzera, M. Zha, D. Calestani, A. Zappettini, L. Lazzarini, G. Salviati, L. Zanotti, Nanotechnology 18,
355707 (2007)
123.X. D. Pu, W. Z. Shen, Z. Q. Zhang, H. Ogawa, and Q. X. Guo, Appl. Phys. Lett. 88, 151904 (2006)
124.A. B. M. Almamun Ashrafi, N. T. Binh, B. P. Zhang, and Y. Segawa, Appl. Phys. Lett. 84, 2814 (2004)
125.M. E. I. Kurdi, H. Bertin, E. Martincis, M. de Kersauson, G. Fishman, S. Sauvage, A. Bosseboeuf, and P. Boucaud, Appl. Phys. Lett. 96, 041909 (2010)
126.S. Rani, S. C. Roy, N. Kararand, M. C. Bhatnagar, Solid State Communications 141, 214 (2007)
127.C. C. Hung, M. P. Chang, C. Y. Ho, C. K. Yu, and W. T. Lin, J. Electrochem. Soc. 157, K80 (2010)
128.A. Walsh, J. L. F. Da Silva, S. H. Wei, C. Korber, A. Klein, F. F. J. Piper, A. DeMasi, K. E. Smith, G. Panaccione, P. Torelli, D. J. Payne, Bourlange, and R. G. Egdell, Phys. Rev. Lett. 100, 167402 (2008)
129.P. D. C. King, T. D. Veal, D. J. Payne, A. Bourlange, R. G. Egdell, and C. F. McConville, Phys. Rev. Lett. 101, 116808 (2008)
130.A. Bourlange, D. J. Payne, R. G. Egdell, J. S. Foord, P. P. Edwards, M. O. Jones, A. Schertel, P. J. Dobson, and J. L. Hutchison, Appl. Phys. Lett. 92, 092117 (2008)
131.B. C. Mohanty, Y. H. Jo, D. H.Yeon, I. J. Choi, and Y. S. Cho, Appl. Phys. Lett. 95, 062103 (2009)
132.T. P. Rao, M. C. S. Kumar, S. A. Angayarkanni, M. Ashok, J. Alloys Comp. 485, 413(2009)
133.Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H. C. Luan, and L. C.Kimerling, Appl. Phys. Lett. 82, 2044 (2003)