| 研究生: |
周庭光 Chou, Ting-Kuang |
|---|---|
| 論文名稱: |
彰濱漢寶潮間帶光達風場量測 Measurement and Analysis of Wind Field Data by Using LIDAR at HamBau Intertidal Zone |
| 指導教授: |
苗君易
Miau, Jiun-Jih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 光達風剖儀 、大氣邊界層 、風場 、經驗指數函數與理論對數函數 、WRF |
| 外文關鍵詞: | LiDAR, atmospheric boundary layer, wind farm, power law and log law, WRF |
| 相關次數: | 點閱:108 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
彰濱漢寶潮澗帶位於台灣西部彰化地區,其天氣型態深受東亞季風氣候引響,本實驗利用光達風剖儀與超聲波風速計等儀器,在此處於夏秋兩季分別進行為期一周的現場風場量測,探討彰濱地區在台灣特有季風氣候下之風場特性,如平均風速、風向、紊流強度與雷諾應力等,以及大氣穩定度概況,並藉由經驗指數函數與理論對數函數進行比對。此外,本研究亦利用WRF針對實際現場量測時段分別進行現場風場的模擬,並與實際量測結果進行比對。
彰濱漢寶潮澗帶風場深受到台灣兩種季風引響,及夏季的西南季風與秋冬的東北季風,前者風速弱並伴隨海陸差異引響,後者風速強且風向變化不大,兩者在風速剖面部分皆會受到日夜與風向差異而引響其分布概況,整體而言以經驗指數函數描述較佳,可吻合至160米高程。WRF的模擬結果顯示,風速經常高估且風向模擬較不精確,但整體來說與量測結果呈現高度相關。
Field measurements were conducted during the periods of time that the weather condition were predominantly influenced by the East Asian Monsoon at Ham-Bau intertidal zone located in the middle of western coastal of Taiwan. The remote sensing instrument, LiDAR, was used to measure the vertical variation of 3 dimensional wind speed for 12 layers of altitude in the atmospheric boundary layer. A sonic anemometer was also used to measure the wind data near the ground, which was mounted on a small mast at 3 meters high. For the analysis method, several of basic parameters describing the wind characteristic were evaluated, such as mean wind speed, turbulence intensity, Reynolds stress, and so on. Stability analysis and spectrum analysis were also accomplished. In addition, the empirical power law and theoretical log law model were used to fit the wind profile. These two models were employed to simulate the ensemble averaging results that based on two kinds of classifications, the diurnal variation and the difference of wind direction, to study the applicability and reliability of them. Moreover, the numerical model, Weather Research and Forecasting (WRF) model, was also used in order to simulate the averaged values of wind data at the same periods of the field measurement time. The simulated results as well as the measured data from an offshore wind mast were then being used to make a comparison to the field measuring LiDAR data.
[1] Steve S., Klaus R. , GLOBAL WIND REPORT ANNUAL MARKET UPDATE. , 2015 , GWEC
[2] Nina C. , “Global wind capacity to nearly double in next five years: GWEC” , 20-Apr-16 , http://planetark.org/enviro-news/item/74364
[3] 林俶寬, 張上君, 黃振愷, 劉晉堯 , 台灣地區離岸風場選址技術之探討 , 中華技術 , 2014 , No. 103
[4] IEC 61400-12-1 Wind turbines – Part 12-1: Power performance measurements of electricity producing wind turbines , IEC-TC88 Maintenance Team MT12-1 , 2012
[5] 陳美蘭, 李宜宸 , QuikSCAT 衛星風場數值模擬離岸風能分析研究 , 工業技術研究所 能源與環境研究所新能源技術組
[6] ARW Version3 Modeling System User’s Guide. , Mesoscale & Microscale Meteorology Division, Nation Center for Atmospheric Research , 2015
[7] Roland B. Stull , An Introduction to Boundary Layer Meteorology. , Kluwer Academic Publishers , Dordrecht/Boston/London , 1988
[8] Alfredo P. , Sensing the wind profile. Risø National Laboratory for Sustainable Energy. , 2009
[9] 钱正安, 宋敏紅, 李万元 , 近五十年来中国北方沙尘暴的分布及变化趋势分析. Journal of Desert Research. , 2002 , Vol. 22. No. 2
[10] Peter A. Irwin , WIND ISSUES IN THE DESIGN OF TALL BUILDINGS , 2010
[11] 陳美蘭 , 風能應用技術 , 物理雙月刊(廿九卷三期) , 2007
[12] Hans A. Panofsky, John A. Dutton , Atmospheric Turbulence: Models and Methods for Engineering Applications. , A Wiley-Interscience Publication , 1983
[13] T. S. El-Madany, H. F. Duarte, D. J. Durden, B. Paas1, M. J. Deventer1, J.-Y. Juang, M. Y. Leclerc, and O. Klemm1 , Low-level jets and above-canopy drainage as causes of turbulent exchange in the nocturnal boundary layer. , Biogeosciences, 2014 , 4507–4519
[14] Y. S. Tsai, Y. C. Yang, W. T. Chang, W. C. Yang , A study of the sea surface drag coefficient offshore the coast of Changhua Taiwan. , 2016
[15] Daniel R.Drewn, JanetF.Barlow, SiânE.Lane , Observations of wind speed profiles over Greater London, UK, using a Doppler lidar. , Journal of Wind Engineering and Industrial Aerodynamics , 2013 , 98-105
[16] Yukio Tamura, Kenichi Suda, Atsushi Sasaki, Yoshiharu Iwatani, Kunio Fujii, Kazuki Hibi, Ryukichi Ishibashi , Wind speed profiles measured over ground using Doppler sodars. Journal of Wind Engineering and Industrial Aerodynamics , 1999 , 83-93
[17] Y. Tamura, K. Suda, A. Sasaki, K. Miyashitad, Y. Iwatani, T. Maruyama, K. Hibi, R. Ishibashi , Simultaneous wind measurements over two sites using Doppler sodars. Journal of Wind Engineering and Industrial Aerodynamics , 2001 , 1647-1656
[18] S. A. Hsu , Determining the Power-Law Wind Profile Exponent under Near-Neutral Stability Condition at Sea. , 1993
[19] Y. Tamura, Y. Iwatani, K. Hibi, K. Suda, O. Nakamura, T. Maruyama, R. Ishibashi , Profiles of mean wind speeds and vertical turbulence intensities measured at seashore and two inland sites using Doppler sodars. , Journal of Wind Engineering and Industrial Aerodynamics , 2007 , 411-427
[20] A. C. Chamberlain , Roughness Length of Sea, Sand, and Snow. , HERE, Harwell, Oxon, U.K. , 1983
[21] Alfredo Pena, Sven-Erik Gryning and Charlotte B. Hasager , Measurements and Modelling of the Wind Speed Profile in the Marine Atmospheric Boundary Layer.
[22] Sven-Erik Gryning, Ekaterina Batchvarova, Burghard Brümmer, Hans Jørgensen, Søren Larsen , On the extension of the wind profile over homogeneous terrain beyond the surface boundary layer. Boundary-Layer Meteorol. , 2007 , 124:251–268
[23] S. Emeis , How Well Does a Power Law Fit to a Diabatic Boundary-Layer Wind Profile? , DEWI Magazin , 2005 , Nr. 26
[24] Technical Note , A Theoretical Variation of the Wind Profile Power-law Exponent as a Function of Surface Roughness and Stability. , Atmospheric Environment , 1978 , Vol 133, pp. 191-194.
[25] J. A. Businger, J. C. Wyngaard, Y. Izumi and E. F. Bardley , Flux-Profile Relationships in the Atmospheric Surface Layer. , 1970
[26] Christoph R. , Volker J. , Roland M. , Fundamentals of Spectrum Analysis , Germany : Rohde & Schward GmbH & Co. KG , 2001
[27] Isaac Van der Hoven , Power Spectrum of Horizontal Wind Speed in the Frequency Range from 0.0007 to 900 Cycles per Hour , Journal of Meteorology, U.S Weather Bureau , 1956 , Volume 14
[28] U. Frisch , Fully Developed Turbulence and Intermittency.
[29] Lecture note by Karima K. , Kolmogorov’s 5/3 law , Department of Mathematical Sciences, Loughborough University, UK. , 2009.
[30] Shu-hua Chen & Jimy Dudhia , Annual Report: WRF Physics.
[31] Jimy Dudhia , Overview of WRF Physics. , NCAR/MMM
[32] S. Shimada and T. Ohsawa , Accuracy and Characteristic of Offshore Wind Speeds Simulated by WRF. , Kobe University, Japan. , 2011.
[33] O. Krogsæter and J. Reuder , Validation of boundary layer parameterization schemes in the weather research and forecasting model under the aspect of offshore wind energy applications—Part I: Average wind speed and wind shear. , Wind Energy, 2015 , 18: 769-782.
[34] Christopher G. Nunalee and Sukanta Basu , Mesoscale modeling of coastal low-level jets: implications for offshore wind resource estimation. , Wind Energ. , 2014 , 17:1199–1216
[35] Y. S. Tsai, P. H. Lin, Y. C. Yang, J. L. Chen. , Lidar observation of surface wind profiles in Changhua Coastal Industrial Park. , 2015
[36] Jean-Pierre Cariou & Matthieu Boquet , LEOSPHERE Pulsed Lidar Principles – Contribution to UpWind WP6 on Remote Sensing Devices. , LEOSPHERE, Orsay, FR
[37] Steven Lang and Eamon McKeogh , LIDAR and SODAR Measurements of Wind Speed and Direction in Upland Terrain for Wind Energy Purposes. , Remote Sens. , 2011 , 3, 1871-1901
[38] David A. Smith, Michael Harris, Adrian S. Coffey, Torben Mikkelsen, Hans E. Jørgensen, Jakob Mann, and Régis Danielian , Wind Lidar Evaluation at the Danish Wind Test Site in Høvsøre. Wind Energ. , 2006 , 9:87–93
[39] J. Mann, A. Pena, F. Bingo, L, R. Wagner, and M. S. Courtney , Lidar Scanning of Momentum Flux in and above the Atmospheric Surface Layer. , 2009
[40] P. Schotanus, F.T.M. Nieuwstadt, H.A.R. De Bruin , Temperature Measurement with a Sonic Anemometer and Its Application to Heat and Moisture Fluxes. , 1983
[41] INTERNATIONAL STANDARD IEC 61400-1. 3rd edition , 2005
[42] S. A. Hsu , Models for Estimating Offshore Winds from Onshore Meteorological Measurements. , 1980