簡易檢索 / 詳目顯示

研究生: 郭家瑋
Guo, Jia-Wei
論文名稱: 以電紡沉積法製備二氧化鈦酸鹼度感測器之研究
Preparation of Titania-based pH Sensors by Electrospinning Deposition
指導教授: 陳慧英
Chen, Huey-Ing
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 103
中文關鍵詞: 二氧化鈦酸鹼度感測器電紡延伸式閘極場效電晶體
外文關鍵詞: titania, electrospinning, EGFET, pH sensor
相關次數: 點閱:91下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係以電紡法製備二氧化鈦/氟摻氧化錫(TiO2/FTO )薄膜作為延伸式閘極,並結合場效電晶體製作pH感測元件,旨在探討製備變因,包括:電紡液之PVP添加、工作電壓、射出流率、電紡收集時間及丙酮浸泡等條件對所得TiO2/FTO薄膜形態、結構及片電阻之影響,並進一步探討各元件之pH感測特性。為進一步評估元件使用之穩定性及量測準確度,以最佳元件進行感測溫度、鈉離子共存干擾、遲滯及時漂等效應之探討。
    實驗結果顯示,製備變因對TiO2/FTO薄膜之表面性質影響甚鉅,進而影響所得元件之pH感測特性,當電紡液未添加PVP時,電紡後沉積形成TiO2奈米粒子(TiO2 NP);當添加5% PVP時,則形成TiO2 奈米絲 (TiO2 NF )。隨著電紡工作電壓之增大,TiO2 NP粒徑亦增大,且逐漸形成中空珠狀;而TiO2 NF則於工作電壓為10 kV時呈現一最小絲徑。當收集時間增長時,TiO2 沉積量隨之增加,雖然可增加感測膜表面之活性座,但亦造成膜層片電阻之增大,不利於電訊之傳遞。另外,以丙酮液浸泡處理TiO2 NF / FTO薄膜,可增加紡絲間、紡絲與FTO間之黏結性,進而降低膜電阻。
    由pH感測結果得知,TiO2沉積量與膜電阻是決定元件pH感測靈敏度之關鍵因素。TiO2 NF/FTO、TiO2 NP/FTO兩系列元件之最適射出流率為0.3 ml/h,收集時間為3 min,煅燒溫度為500 oC,而兩者之最佳工作電壓則分別為5、10 kV。在20 oC下,最佳TiO2 NF/FTO元件在pH 2~12間之感測靈敏度為75.16 mV/pH,線性度為0.9992;而最佳TiO2 NP/FTO元件之靈敏度更高達79.73 mV/pH,線性度為0.9965;兩元件對pH之感測均呈現super-Nernstian特性。
    實驗結果亦顯示,TiO2 NF/FTO及TiO2 NP/FTO元件之靈敏度與感測溫度大致呈線性正向關係,且對鈉離子之選擇性佳;而遲滯電位分別為62.66 、61.4 mV。另外,TiO2 NF/FTO元件之時漂速率甚小,於 pH 2、7、12下分別為0.71 、1.15、0.87 mV/h,顯示此元件具備長時間使用之穩定性。
    綜上所述,以電紡法製備TiO2/FTO感測元件,無論中空珠狀或絲狀TiO2膜,對pH量測均展現良好之感測性能,具有應用開發價值。

    Titania films based extended gate field-effect transistor (EGFET) pH sensors were fabricated in this work. Experimentally, titania films were deposited on FTO substrate by electrospinning. The influences of preparation parameters including PVP concentration in electrospinning solution, working voltage and collection time on the surface morphology, crystalline structure and sheet resistance of TiO2 films were investigated. Furthermore, sensing performances of resulting TiO2 devices toward pH were also studied. Among all studied devices, the best NF device obtained at working voltage of 5 kV exhibited a sensitivity of 75.16 mV/pH. Whereas, the best NP device obtained at working voltage of 10 kV exhibited a superior sensing sensitivity of 79.73 mV/pH at 20 oC.

    摘要 I Abstract III 誌謝 VIII 總目錄 IX 表目錄 XI 圖目錄 XIII 符號說明 XVIII 第一章 緒 論 1 1.1 前言 1 1.2 酸鹼感測器之發展 1 1.3 場效電晶體式的pH感測器 3 1.3.1金屬-氧化物-半導體場效電晶體(Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET) 3 1.3.2離子感測場效電晶體(Ion-Sensitive Field-Effect Transistor, ISFET) 3 1.3.3 延伸式閘極場效電晶體(Extended Gate Field Effect Transistor, EGFET) 4 1.4 二氧化鈦與酸鹼感測器 4 1.4.1二氧化鈦特性 4 1.4.2二氧化鈦製備 5 1.4.3電紡法 5 1.5研究動機與目的 5 第二章 原理 10 2.1電紡絲原理 10 2.2場效電晶體基礎理論 11 2.3表面吸附座鍵結模型 13 3.1 藥品及材料 17 3.2實驗設備 18 3.2.1實驗設備 18 3.2.2分析儀器 18 3.3實驗步驟與分析方法 20 3.3.1元件製備 20 3.3.2分析方法 22 3.3.3儀器分析方法及樣品處理 23 第四章 紡絲特性之探討 26 4.1電紡變因之探討 26 4.1.1工作電壓之影響 26 4.1.2添加PVP之影響 27 4.1.3鈦前驅鹽濃度之影響 27 4.1.4射出流率之影響 28 4.2丙酮處理之探討 28 4.3煅燒溫度之探討 29 第五章 TiO2/FTO元件製備及pH感測特性 43 5.1粒狀TiO2/FTO薄膜特性及pH感測探討 43 5.1.1收集時間之影響 43 5.1.2電紡工作電壓之影響 45 5.2奈米絲狀TiO2薄膜之pH感測探討 47 5.2.1電紡工作電壓之影響 47 5.2.2收集時間對感測特性之探討 48 5.2.3丙酮處理對感測特性之探討 50 5.2.4煅燒溫度之影響 51 5.3元件使用特性之探討 52 5.3.1感測溫度之影響 52 5.3.2鈉離子共存之影響 53 5.3.3遲滯效應 53 5.3.4時漂效應 54 5.3.5飽和區操作 54 5.4 綜合討論 55 第六章 結論與建議 92 6.1 結論 92 6.2 建議 94 參考文獻 96

    [1] S. S. Zumdahl, Chemical Principles. 6th ed., Houghton Mifflin (2007)
    [2] T. R. Kuphaldt, Lessons In Electric Circuits Volume III – Semiconductors. 5th ed., ibiblio (2009)
    [3] 施正雄, “化學感測器”, 五南出版社,民國一零四年四月一日初版首刷。
    [4] J. E. Lilienfeld, "Method and apparatus for controlling electric current," US 1745175 (1925)
    [5] O. Heil, "Improvements in or relating to electrical amplifiers and other control arrangements and devices," GB 439457 (1934)
    [6] K. Dawon, "Electric field controlled semiconductor device," US 3102230 (1960)
    [7] C. Toumazou, P. Georgiou and P. Bergveld, “Piet Bergveld-40 years of ISFET technology: From neuronal sensing to DNA sequencing,” Electron. Lett, 26, S7-S12 (2011)
    [8] K. B. Parizi, X. Q. Xu, A. Pal, X. L. Hu and H. S. P. Wong, “ISFET pH sensitivity: counter-ions play a key role” Sci. Rep., 7 (2017)
    [9] J. Van der Spiegel, I. Lauks, P. Chan and D. Babic, “The extended gate chemical sensitive field effect transistor as multi-species microprobe,” Sens. Actuators B: Chem., 4, 291-298 (1983)
    [10] 張晞硯,“延伸式閘極金屬氧化物酸鹼度感測器之製備與特性研究”,國立成功大學 碩士論文 (2013)
    [11] 楊政憲,“以溶膠凝膠法製備二氧化鈦酸鹼度感測器之研究”,國立成功大學 碩士論文 (2013)
    [12] M. Jonas, E. Stephan, T. Ralf and G. Stefan, “A DFT-D study of structural and energetic properties of TiO2 modifications,” J. Phys.: Condens. Matter, 24, 424206 (2012)
    [13] L. L. Chi, J. C. Chou, W. Y. Chun, T. P. Sun and S. K. Hsiung, “Study on extended gate field effect transistor with tin oxide sensing membrane,” Mater. Chem. Phys., 63, 19-23 (2000)
    [14] J. Zhang, S. W. Choi and S.S. Kim, “Micro- and nano-scale hollow TiO2 fibers by coaxial electrospinning: preparation and gas sensing,” J. Solid State Chem. , 184, 3008–3013 (2011)
    [15] H. Tong, H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri and J. Ye, “Nano-photocatalytic materials: possibilities and challenges,” Adv. Mater, 24, 229-251 (2012)
    [16] J. Yang, X. Hong, Z. Yaomin, L. Ling and J. Zhiyu, “Photoelectrochemical properties of nano-TiO2 film electrodes prepared by thermal oxidation,” Rare Metal Mat. Eng. 36,1283-1286 (2007)
    [17] N. Hammer, K. Mathisen and M. Ronning, “CO oxidation over Au/TiO2-Carbon catalysts: the effect of thermal treatment, stability and TiO2 support structure,” Top. Catal., 56, 637-649 (2013)
    [18] X. D. Zhou, S. H. Zhou, X. K. Sun and Y. L. Zhang, “TiO2 nanofilm growth by Ti ion implantation and thermal annealing in O2 atmosphere,” Nucl. Sci. Tech., 26 (2015)
    [19] N. Liu, X. Y. Chen, J. L. Zhang and J. W. Schwank, “A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications” Catal. Today, 225,34-51 (2014)
    [20] D. S. Xu, J. M. Li, Y. X. Yu and J. J. Li, “From titanates to TiO2 nanostructures: controllable synthesis, growth mechanism, and applications,”Sci. China Chem., 55, 2334-2345 (2012)
    [21] C. J. Barbe, Francine Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover and M. Grätzel, “Nanocrystalline titanium oxide electrodes for photovoltaic applications,” J. Am. Ceram. Soc., 80, 3157-3171 (1997)
    [22] C. P. Sajan, S. Wageh, A. A. Al-Ghamdi, J. Yu and S. Cao, “TiO2 nanosheets with exposed {001} facets for photocatalytic applications” Nano Research, 9, 3-27 (2016)
    [23] P. D. Cozzoli, A. Kornowski and H. Weller, “ Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods,” J. Am. Chem. Soc., 125, 14539-14548 (2003)
    [24] A. Lewkowicz, A. Synak, B. Grobelna, P. Bojarski, R. Bogdanowicz, J. Karczewski, K. Szczodrowski and M. Behrendt, “Thickness and structure change of titanium (IV) oxide thin films synthesized by the sol–gel spin coating method,” Opt. Mater. (Amst)., 36, 1739-1744 (2014)
    [25] S. Nadzirah and U. Hashim, “Annealing effects on titanium dioxide films by sol-gel spin coating method,” RSM 2013 IEEE Reg. Symp. Micro Nanoelectron., 25-27 Sept, 159-162 (2013)
    [26] N. Arconada, A. Dura´n, S. Sua´rez, R. Portela, J. M. Coronado, B. Sa´nchez and Y. Castro, “Synthesis and photocatalytic properties of dense and porous TiO2-anatase thin films prepared by sol-gel,” Appl. Catal. B- Environ., 86, 1-7 (2009)
    [27] Z. Ding, X. J. Hu, P. L. Yue, G. Q. Lu and P. F. Greenfield, “Synthesis of anatase TiO2 supported on porous solids by chemical vapor deposition,” Catal. Today, 68, 173-182 (2001)
    [28] Q. Fang, J. Y. Zhang, Z. M. Wang, J. X. Wu, B. J. O’Sullivan, P. K. Hurley, T. L. Leedham, H. Davies, M. A. Audier, C. Jimenez, J. P. Senateur and I. W. Boyd, “Investigation of TiO2-doped HfO2 thin films deposited by photo-CVD,” Thin Solid Films, 428, 263-268 (2003)
    [29] W. J. Zhang, Y. Li and F. H. Wang, “Properties of TiO2 thin films prepared by magnetron sputtering,” J. Mater. Sci. Technol., 18,101-107 (2002)
    [30] M. Z. Ge, Q. S. Li, C. Y. Cao, J. Y. Huang, S. H. Li, S. N. Zhang, Z. Chen, K. Q. Zhang, S. S. Al-Deyab and Y. K. Lai, “One-dimensional TiO2 nanotube photocatalysts for Solar Water Splitting,” Adv. Sci., 4 (2017)
    [31] A. E. Mohamed and S. Rohani, “Modified TiO2 nanotube arrays (TNTAs): progressive strategies towards visible light responsive photoanode a review,” Energy Environ. Sci., 4, 1065-1086 (2011)
    [32] C. Harito, R. Porras, D. V. Bavykin and F. C. Walsh, “Electrospinning of in situ and ex-situsynthesized polyimide composites reinforced by titanate nanotubes,” J. Appl. Polym. Sci., 134 (2017)
    [33] M. Castellano, R. Cantù, M. Mauri, E. Marsano and S. Vicini, “Poly(dimethylsiloxane) /TiO2 photocatalytic membranes obtained by different electrospinning systems,” J. Nanosci. Nanotechnol., 16, 6587-6594 (2016)
    [34] C. Tekmen, A. Suslu and U. Cocen, “Titania nanofibers prepared by electrospinning,” Mater. Lett., 62, 4470–4472 (2008)
    [35] J. Y. Park and S. S. Kim, “Effects of processing parameters on the synthesis of TiO2 nanofibers by electrospinning,” Met. Mater. Int., 15, 95-99 (2009)
    [36] H. H. Li, W. S. Dai, J. C. Chou and H. C. Cheng, “An extended-gate field-effect transistor with low-temperature hydrothermally synthesized SnO2 nanorods as pH sensor,” IEEE Electron Device Lett., 33, 1495-1497 (2012)
    [37] G. M. Ali, “Interdigitated extended gate field effect transistor without reference electrode,” J. Electron. Mater., 46, 713-717 (2017)
    [38] C. T. Lee and Y. S. Chiu, “Photoelectrochemical passivated ZnO— based nanorod structured glucose biosensors using gate—recessed AlGaN/GaN ion—sensitive field-effect—transistors.” Sens. Actuators B: Chem., 210, 756-761 (2015)
    [39] P. D. Batista and M. Mulato, “ZnO extended-gate field-effect transistors as pH sensors,” Appl. Phys. Lett., 87, 14508-1 - 14508-3 (2005)
    [40] A. Fulati, S. M. U. Ali, M. Riaz, G. Amin, O. Nur and M. Willander, “Miniaturized pH Sensors Based on Zinc Oxide Nanotubes/Nanorods”, Sensors, 9, 8911-8923 (2009)
    [41] P. U. Yang, J. L. Wang, P. C. Chiu, J. C. Chou, C. W. Chen, H. H. Li and H. C. Cheng “pH sensing characteristics of extended-gate field-effect transistor based on Al-doped ZnO nanostructures hydrothermally synthesized at low temperatures,” IEEE Electron Device Lett., 32, 1603-1605 (2011)
    [42] J. C. Lin, B. R. Huang and Y. K. Yang, “IGZO nanoparticle-modified silicon nanowires as extended-gate field-effect transistor pH sensors,” Sens. Actuators B, 184, 27-32 (2013)
    [43] C. M. Yang , J. C. Wang, T. W. Chiang, Y. T. Lin, T. W. Juan, T. C. Chen, M. Y. Shih, C. E. Lue and C. S. Lai, "Nano-IGZO layer for EGFET in pH sensing characteristics", Nanoelectronics Conference (INEC), 2013 IEEE 5th International (2013)
    [44] N. M. Abd-Alghafour, N. M. Ahmed, Z. Hassan, M. A. Almessiere, M. Bououdina and N. H. Al-Hardan, “High sensitivity extended gate effect transistor based on V2O5 nanorods.” J. Mater. Sci. - Mater. Electron., 28, 1364-1369 (2017)
    [45] E. M. Guerra, G. R. Silva and M. Mulato, “ Extended gate field effect transistor using V2O5 xerogel sensing membrane by sol–gel method,” Solid State Sci., 11, 456-460 (2009)
    [46] E. M. Guerra and M. Mulato, “Synthesis and characterization of vanadium oxide/hexadecylamine membrane and its application as pH-EGFET sensor.,” J. Sol Gel Sci. Technol., 52, 315-320 (2009)
    [47] E. J. Guidelli, E. M. Guerra and M. Mulato, “V2O5/WO3 mixed oxide films as pH-EGFET sensor: sequential re-usage and fabrication volume analysis.” ECS J. Solid State Sci. Technol., 1, N39-N44 (2012)
    [48] H. J. N. P. D. Mello and M. Mulato, “Well-established materials in microelectronic devices systems for differential-mode extended-gate field effect transistor chemical sensors,” Microelectron. Eng., 160, 73-80 (2016)
    [49] Y. R. Li , S. H. Chang, C. T. Chang, W. L. Tsai, Y. K. Chiu, P. Y. Yang and H. C. Cheng, “High-sensitivity extended-gate field-effect transistors as pH sensors with oxygen-modified reduced graphene oxide films coated on different reverse-pyramid silicon structures as sensing heads,” Jpn. J. Appl. Phys., 55, 04EM08 (2016)
    [50] T. S. Lin, C. T. Lee, H. Y. Lee and C. C. Lin, “Surface passivation function of indium-tin-oxide-based nanorod structural sensors,” Appl. Surf. Sci., 258, 8415-8418 (2012)
    [51] F. A. Sabah, N. M. Ahmed, Z. Hassan and M. A. Almessiere, “Effect of light on the sensitivity of CuS thin film EGFET implemented as pH sensor,” Int. J. Electrochem. Sci.,11, 4380 - 4388 (2016)
    [52] S. Zaman, M. H. Asif, A. Zainelabdin, G. Amin, O. Nur and M. Willander, “CuO nanoflowers as an electrochemical pH sensor and the effect of pH on the growth,” J. Electroanal. Chem., 662, 421-425 (2011)
    [53] N. H. Al-Hardan, M. A. A. Hamid, N. M. Ahmed, A. Jalar, R. Shamsudin, N. K. Othman, L. K. Keng, W. Chiu and H. N. Al-Rawi, “High sensitivity pH sensor based on porous silicon (PSi) extended gate field-effect transistor” Sensors, 16, 839 (2016)
    [54] K. A. Yusof, R. A. Rahman, M. A. Zulkefle, S. H. Herman and W. F. H. Abdullah, “pH sensitivity dependency on the annealing temperature of spin-coated titanium dioxide thin films,” Jurnal Teknologi, 78, 39-44 (2016)
    [55] M. A. Zulkefle, R. A. Rahman, K. A. Yusof, W. F. H. Abdullahb, M. Rusop and S. H. Herman, “Spin speed and duration dependence of TiO2 thin films pH sensing behavior,” J. Sensors (2016)
    [56] K. A. Yusof, R. A. Rahman, M. A. Zulkeflea, S. H. Herman and W. F. H. Abdullahb, “EGFET pH sensor performance dependence on sputtered TiO2 sensing membrane deposition temperature,” J. Sensors (2016)
    [57] E. M. Guerra and M. Mulato, “Titanium oxide nanorods pH sensors: comparison between voltammetry and extended gate field effect transistor measurements,” Mater. Sci. Appl., 5, 459-466 (2014)
    [58] P. Yao, J. Chiang and M. Lee, “Application of sol-gel TiO2 film for an extended-gate H+ ion-sensitive field-effect transistor,” Solid State Sci., 28, 47-54 (2014)
    [59] Y. C. Huang, F. S. Tsai and S. J. Wang, “Preparation of TiO2 nanowire arrays through hydrothermal growth method and their pH sensing characteristics,” Jpn. J. Appl. Phys., 53 (2014)
    [60] R. A. Rahman, M. A. Zulkeflea, K. A. Yusof, W. F. H. Abdullahb, M. R. Mahmoodc and S. H. Herman, “Characterization of ZnO/TiO2 bilayer film for extended gate field-effect transistor (EGFET) based PH sensor,” Jurnal Teknologi, 78, 33-38 (2016)
    [61] G. M. Da Silva, S.G. Lemos, L.A. Pocrifka, P.D. Marreto, A.V. Rosario and E.C. Pereira, “Development of low-cost metal oxide pH electrodes based on the polymeric precursor method,” Chim. Acta., 616, 36-41 (2008)
    [62] C. H. Kao, H. Chen and C. Y. Huang, “Effects of Ti addition and annealing on high-k Gd2O3 sensing membranes on polycrystalline silicon for extended-gate field-effect transistor applications,” Appl. Surf. Sci., 286, 328-333 (2013)
    [63] C.J. Thompson, G.G. Chase, A.L. Yarin and D.H. Reneker, “Effects of parameters on nanofiber diameter determined from electrospinning model,” Polymer, 48, 6913-6922 (2007)
    [64] H. Fong, I. Chun and D.H. Reneker, “Beaded nanofibers formed during electrospinning,” Polymer, 40, 4585–4592 (1999)
    [65] 張順雄, 張忠誠, 李榮乾 譯, “電子元件與電路理論 上冊”, 東華書局, 民國九十一年五月一日初版首刷。
    [66] K. A. Yusof, R. A. Rahman, M. A. Zulkefle, S. H. Herman and W. F. H. Abdullah, “EGFET pH sensor performance dependence on sputtered TiO2 sensing membrane deposition temperature,” J. Sensors, 1-9 (2016)
    [67] F. A. Sabah, N. M. Ahmed, Z. Hassan and M. A. Almessiere, “Study effect of thin film thickness on the behavior of CuS EGFET implemented as pH sensor,” Dig. J. Nanometer. Bios., 11, 787-793 (2016)
    [68] C. M. Yang, J. C. Wang, T. W. Chiang, Y. T. Lin, T. W. Juan, T. C. Chen, M. Y. Shih, C. E. Lue and C. S. Lai, “Hydrogen ion sensing characteristics of IGZO/Si electrode in EGFET,” Int. J. Nanotechnol., 11, 15-26 (2014)
    [69] J. L. Wang, P. Y. Yang, T. Y. Hsieh, C. C. Hwang and M. H. Juang, “pH-sensing characteristics of hydrothermal Al-doped ZnO nanostructures,” J. Nanometer., 1-7 (2013)
    [70] D. Atanu, D. H. Ko, C. H. Chen, L. B. Chang, C. S. Lai, F. C. Chu, L. Chow and R. M. Lin, “Highly sensitive palladium oxide thin film extended gate FETs as pH sensor,” Sens. Actuators B: Chem., 205, 199-205 (2014)
    [71] S. X. Chen, S. P. Chang and S. J. Chang, "Investigation of InN Nanorod-based ISFET pH Sensors Fabricated on quratz Substrate," Dig. J. Nanomater. Bios., 9, 1505-1511 (2011)
    [72] P. V. Thanh, L. T. Q. Nhu, H. H. Mai, N. V. Tuyen, S. C. Doanh, N. C. Viet and D. T. Kien, "Zinc Oxide Nanorods Grown on Printed Circuit Board for Extended-Gate Field-Effect Transistor pH Sensor," J. Electron. Mater., 46, 3732-3737 (2017)
    [73] K. Y. Wang, W. L.Tsai, P. Y. Yang, C. H. Chou, Y. R. Li, C. Y. Liao and H. C. Cheng, "Effect of oxygen plasma treatment on horizontally aligned carbon nanotube thin film as pH-sensing membrane of extended-gate field-effect transistor," Jpn. J. Appl. Phys., 54 (2015)
    [74] J. L. Chiang, S. S. Jhan, S. C. Hsieh, A. L. Huang, "Hydrogen ion sensors based on indium tin oxide thin film using radio frequency sputtering system," Thin Solid Films, 517, 4805-4809 (2009)
    [75] S. P. Chang and T. H. Yang, "Sensing Performance of EGFET pH Sensors with CuO Nanowires Fabricated on Glass Substrate," Int. J. Electrochem. Sci, 7, 5020-5027 (2012)
    [76] S. P. Chang, C. W. Li, K. J. Chen, S. J. Chang, C. L. Hsu, T. J. Hsueh and H. T. Hsueh, "ZnO-Nanowire-Based Extended-Gate Field-Effect-Transistor pH Sensors Prepared on Glass Substrate," American Scientific Publishers, 4, 1174-1178 (2012)
    [77] P. Y. Lee, S. P. Chang, P. J. Kuo, E. H. Hsu, S. J. Chang and S. C. Shei, "Sensing Performance of EGFET pH Sensors with CZTSe Nanoparticles Fabricated on Glass Substrates," Int. J. Electrochem. Sci, 8, 3866-3875 (2013)

    下載圖示 校內:2022-08-24公開
    校外:2022-08-24公開
    QR CODE