簡易檢索 / 詳目顯示

研究生: 范佐興
范佐興, Tso-Hsing Fan
論文名稱: 含咔唑及1,3,4-噁二唑基團之芴衍生物雙極主體材料: 合成及應用於磷光發光二極體
Bipolar Host Materials Composed of Fluorenyl, Carbazolyl and 1,3,4-Oxadiazolyl Groups: Synthesis and Application in PhOLEDs
指導教授: 陳雲
Chen, Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 103
中文關鍵詞: 磷光有機發光二極體濕式製程雙極主體材料咔唑噁二唑
外文關鍵詞: PhOLEDs, solution process, bipolar host, carbazole, oxdiazole
相關次數: 點閱:103下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 磷光有機發光二極體(PhOLEDs)是新世代平面顯示器中最具潛力的技術。由於其發光層摻雜重原子錯合物之磷光發光體,使其可同時利用單重態和三重態激子,將原本理論上內部量子效率25%提升至100%,其中濕式製程更被視為讓製程簡單化且面板大尺寸化的關鍵。但由於傳統濕式製程之高分子主體材料雖然有良好的膜態,但由於其純化不易且沒有固定之分子量,因此小分子主體材料變成主體材料之研究趨勢。而對於高效率濕式製程的磷光發光二極體而言,小分子雙極主體材料必須擁有良好的熱穩定性及膜態並同時具有極佳的載子傳輸能力以增加電子及電洞再結合,這也是目前主體材料開發之主流。
    因此本研究設計並合成兩種新型的磷光有機發光二極體元件(PhOLED)之雙極主體材料(bipolar host materials) FC3O與FC4O,並以芴(fluorene)為核心(core),鍵結親電洞之咔唑(carbazole)基團以及親電子的噁二唑(oxadiazole)基團,並利用基團數目不同,得到具有良好載子傳輸能力之雙極主體材料。由於FC3O和FC4O具有許多龐大且剛硬之基團,使其具有高熱裂解溫度(Td > 350oC)與玻璃轉移溫度(Tg > 140oC),因此即使在退火後也擁有良好的膜態(RMS roughness < 1 nm),使其可以成功地應用在濕式製程上。FC3O與FC4O擁有高三重激發態[ET= 2.49 eV (FC3O)及2.63 eV (FC4O)],故將其混摻客發光體Ir(ppy)3,並成功地應用於綠色磷光元件[ITO/PEDOT:PSS/EML/BCP/LiF /Al]。而元件表現上,FC3O與FC4O最高亮度分別為9358 cd/m2及10232 cd/m2,最大電流效率分別為14.9及18.2 cd/A,遠勝於傳統濕式主體材料PVK (1500 cd/m2、4.0 cd/A),且在高亮度1000 cd/m2下,FC3O及FC4O之電流效率仍高達12.2 cd/A (18.3% of roll-off)及17.3 cd/A (4.9% of roll-off)。這些優良之元件表現可歸因於:(1) FC3O與FC4O有良好的載子傳輸能力,展現出良好雙極材料特性;(2) 相較於PVK主體材料,FC3O與FC4O的HOMO與LUMO能階與載子傳輸層較匹配,使得載子可以有效的注入進發光層;(3) 由於FC3O及FC4O之分子結構蓬鬆剛硬且非平面性高,因此可以有效防止激發雙體與激發複合體的產生,因此FC3O及FC4O應用在濕式製程綠色磷光元件上有優良的表現。

    In recent years, phosphorescent organic light-emitting diodes (PhOLEDs) have drawing attention increasingly in solid-state lighting application utilizing excitons to achieve 100% internal quantum efficiency theoretically. For wet process, polymer light-emitting diodes (PLED) are considered to be highly suitable because of good morphology but the polymeric problems are difficult purification, batch-to-batch variations and unclear molecular weight. Therefore, it is a good tendency to develop small molecular bipolar host materials possessing good charge-transporting properties and homogeneous film morphology. In this work, we successfully synthesized two new bipolar host materials FC3O and FC4O utilizing fluorene as a bridge and they possess different ratios (3:1, 4:2) of electron-transporting oxadiazolyl and hole-transporting carbazolyl moieties. The bipolar hosts revealed good thermal stability (Td > 350 oC, Tg > 140 oC) because of intrinsic bulky and non-planar structures. Homogeneous films (RMS roughness < 0.8 nm) were obtained by spin-coating process. Moreover, the HOMO/LUMO levels are closed to that of PEDOT:PSS/BCP so hole-injection/electron-injection are improved as well. In addition, multilayer green PhOLEDs with Ir(ppy)3 as dopant were successfully fabricated by spin-coating process. The maximum luminance and maximum current efficiency of FC3O- and FC4O-based device are (9358 cd/m2, 14.90 cd/A) and (10232 cd/m2, 18.2 cd/A), respectively. The performances of both are better than PVK-based one (1567 cd/m2, 4.0 cd/A).

    目錄 摘要 I 誌謝 X 目錄 XII 流程目錄 XIV 圖目錄 XIV 表目錄 XVI 第一章 緒論 1 1-1 前言 1 1-2 基礎理論 5 1-2-1 有機材料之共軛導電特性 5 1-2-2 螢光理論 6 1-2-3 影響螢光強度之重要因素 9 1-2-4 分子內及分子間激發態 (intrachain excitons and interchain excitons) 11 1-3 元件結構與發光原理 13 1-3-1 OLED發展及結構 13 1-3-2 OLED發光原理 15 1-4 能量傳遞機制 18 1-4-1 主體與客體能量轉移原理 (host-guest energy transfer) 18 1-4-2 元件摻雜螢光客發光體之能量轉移 19 1-4-3 元件摻雜磷光客發光體之能量轉移 21 1-5 影響OLED發光效率之因素 22 第二章 文獻回顧 24 2-1 磷光主體材料 (host materials) 24 2-2 磷光摻雜材料 28 2-3 濕式製程磷光發光二極體元件結構 29 2-4 可濕式製程小分子磷光主體材料 31 2-5 研究動機 33 第三章 實驗內容 35 3-1 實驗裝置及設備 35 3-2 鑑定儀器 37 3-3 物性及光電量測儀器 39 3-4 實驗藥品與材料 44 3-5 反應步驟與結果 46 3-6 元件製作與測量 50 第四章 結果與討論 54 4-1 化合物之合成與鑑定 54 4-1-1 核磁共振光譜 (NMR) 54 4-1-2 質譜儀 (MS) 56 4-2 熱性質分析 63 4-2-1 熱重分析 (TGA) 63 4-2-2 微差式掃描熱卡計分析 (DSC) 63 4-3 光學性質分析 67 4-3-1 UV/vis吸收光譜及PL發光光譜 67 4-4 電化學性質分析 71 4-5 成膜性質分析 74 4-6 磷光元件 77 4-6-1 單一載子傳輸元件 (single-carrier-transporting devices) 78 4-6-2 磷光元件性質及光譜 (electroluminescence of PhOLEDs) 81 第五章 結論 91 參考資料 93

    [1] M. Zhu, T. Ye, X. He, X. Cao, C. Zhong, D. Ma, J. Qina , C. Yang, Highly Efficient Solution-processed Green and Red Electrophosphorescent Devices Enabled by Small-molecule Bipolar Host Material, Journal of Materials Chemistry, 21, 9326-9331 (2011).
    [2] L. Xiao, Z. Chen, B. Qu, J. Luo, S. Kong, Q. Gong , J. Kido, Recent Progresses on Materials for Electrophosphorescent Organic Light-Emitting Devices, Advanced Materials, 23, 926-952 (2011).
    [3] Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson , S. R. Forrest, Management of singlet and triplet excitons for efficient white organic light-emitting devices, Nature, 440, 908-912 (2006).
    [4] S. Gong, Q. Fu, Q. Wang, C. Yang, C. Zhong, J. Qin , D. Ma, Highly Efficient Deep-Blue Electrophosphorescence Enabled by Solution-Processed Bipolar Tetraarylsilane Host with Both a High Triplet Energy and a High-Lying HOMO Level, Advanced Materials, 23, 4956-4959 (2011).
    [5] A. C. Arias, J. D. MacKenzie, I. McCulloch, J. Rivnay , A. Salleo, Materials and Applications for Large Area Electronics: Solution-Based Approaches, Chemical Reviews, 110, 3-24 (2010).
    [6] L. Duan, L. Hou, T.-W. Lee, J. Qiao, D. Zhang, G. Dong, L. Wanga , Y. Qiu, Solution processable small molecules for organic light-emitting diodes, Journal of Materials Chemistry, 20, 6392-6407 (2010).
    [7] M. Sudhakar, P. I. Djurovich, T. E. Hogen-Esch , M. E. Thompson, Phosphorescence Quenching by Conjugated Polymers, Journal of the American Chemical Society, 125, 7796-7797 (2003).
    [8] F. C. Chen, G. F. He , Y. Yang, Triplet exciton confinement in phosphorescent polymer light-emitting diodes, Applied Physics Letters, 82, 1006-1008 (2003).
    [9] E. Mondal, W.-Y. Hung, Y.-H. Chen, M.-H. Cheng , K.-T. Wong, Molecular Topology Tuning of Bipolar Host Materials Composed of Fluorene-Bridged Benzimidazole and Carbazole for Highly Efficient Electrophosphorescence, Chemistry A European Journal, 19, 10563-10572 (2013).
    [10] C. J. Zheng, J. Ye, M. F. Lo, M. K. Fung, X. M. Ou, X. H. Zhang , C. S. Lee, New Ambipolar Hosts Based on Carbazole and 4,5-Diazafluorene Units for Highly Efficient Blue Phosphorescent OLEDs with Low Efficiency Roll-off, Chemistry of Materials, 24, 643-650 (2012).
    [11] T. Thoms, S. Okada, J.-P. Chen , M. Furugori, Improved host material design for phosphorescent guest-host systems, Thin Solid Films, 31, 264-268 (2003).
    [12] R. J. Holmes, S. R. Forrest, Y.-J. Tung, R. C. Kwong, J. J. Brown, S. Garon , M. E. Thompson, Blue organic electrophosphorescence using exothermic host–guest energy transfer, Applied Physics Letters, 82, 2422 (2003).
    [13] C. Adachi, M. A. Baldo, M. E. Thompson , S. R. Forrest, Nearly 100% internal phosphorescence efficiency in an organic light-emitting device, Journal of Applied Physics, 90, 5048 (2001).
    [14] B. Park, Y. H. Huh, H. G. Jeon, C. H. Park, T. K. Kang, B. H. Kim , J. Park, Solution Processable Single Layer Organic Light-emitting Devices with a Single Small Molecular Ionic Iridium Compound, Journal of Applied Physics, 108, 94506 (2010).
    [15] Y. Shirota, K. Okumoto , H. Inada, Thermally Stable Organic Light-emitting Diodes Using New Families of Hole-transporting Amorphous Molecular Materials, Synthetic Metals, 111, 387-391 (2000).
    [16] L. Deng, J. Li , W. Li, Solution-processible Small-molecular Host Materials for High-performance Phosphorescent Organic Light-emitting Diodes, Dyes and Pigments, 102, 150-158 (2014).
    [17] Y. Tao, Q. Wang, C. Yang, K. Zhang, Q. Wang, T. Zou, J. Qina , D. Ma*, Solution-processable highly efficient yellow- and red-emitting phosphorescent organic light emitting devices from a small molecule bipolar host and iridium complexes, Journal of Materials Chemistry, 18, 4091-4096 (2008).
    [18] C. H. Chien, L. R. Kung, C. H. Wu, C. F. Shu, S. Y. Chang , Y. Chi, A solution-processable bipolar molecular glass as a host material for white electrophosphorescent devices, Journal of Materials Chemistry, 18, 3461-3466 (2008).
    [19] G. H. Kim, R. Lampande, M. J. Park, H. W. Bae, J. H. Kong, J. H. Kwon, J. H. Park, Y. W. Park , C. E. Song, Highly Efficient Bipolar Host Materials with Indenocarbazole and Pyrimidine Moieties for Phosphorescent Green Light-Emitting Diodes, The Journal of Physical Chemistry C, 118, 28757-28763 (2014).
    [20] M. Pope, P. Magnante , H. P. Kallmann, Electroluminescence in Organic Crystals, Journal of Chemical Physics, 38, 2042-2043 (1963).
    [21] C. W. Tang , S. V. Slyke, Organic Electroluminescent Diodes, Applied Physics Letters, 51, 913-915 (1987).
    [22] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn , A. B. Holmes, Light-emitting-diodes Based on Conjugated Polymers, Nature, 347, 539-541 (1990).
    [23] 郭昭輝, PLED之發展技術, 塑膠資訊, 71, 2-15 (2002).
    [24] J. R. Lakowicz, Principles of Fluorescence Spectroscopy (3rd ed.), US: Springer Press (2006).
    [25] D. A. Skoog, F. J. Holler , S. R. Crouch, Principles of Instrumental Analysis (6th ed.), United States: Brooks Cole Press (2007).
    [26] Y. R. Pu , Y. Chen (2014) Bipolar Electrophosphorescent Host Materials Composed of Carbazole and Oxadiazole or Triazole: Synthesis, Characterization and Optoelectronic Applications, National Cheng Kung University.
    [27] L. Akcelrud, Electroluminescent Polymers, Progress in Polymer Science, 28, 875-962 (2003).
    [28] V. Tran , B. J. Schwartz, Role of Nonpolar Forces on Aqueous Solvation: Computer Simulation Study of Solvation Dynamics in Water Following Changes in Solute Size, Shape, and Charge, Journal of Physical Chemistry B, 103, 5570-5580 (1999).
    [29] Z. Guo, D. Lee, R. D. Schaller, X. Zuo, B. Lee, T. Luo, H. Gao , L. Huang, Relationship between Interchain Interaction, Exciton Delocalization, and Charge Separation in Low-Bandgap Copolymer Blends, Journal of the American Chemical Society, 136, 10024-10032 (2014).
    [30] 葉昆明 , 陳雲, 有機電激發光顯示技術, 科學發展, 385, 58-63 (2005).
    [31] J. Guillet, Polymer Photophysics and Photochemistry, UK: Canbridge University Press (1985).
    [32] 陳金鑫 , 黃孝文, OLED有機電機發光材料與元件, 台灣: 五南圖書出版股份有限公司 Press (2005).
    [33] C. H. Cheng , H. H. Shih (2007) Blue Phosphorescent Emitters and Hosts and Their Application in Organic Electroluminescent Devices, National Tsing Hua University.
    [34] M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson , S. R. Forrest, Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices, Nature, 395, 151-154 (1998).
    [35] N. J. Turro, Modern Molecular Photochemistry: University Science Books Press (1911).
    [36] Z. H. Kafafi, Organic Electroluminescence (1st ed.), US: CRC Press (2005).
    [37] V. May , O. Kuhn, Charge and Energy Transfer Dynamics in Molecular Systems (2nd ed.), Germany: Wiley-VCH Press (2004).
    [38] M. A. Baldo, D. F. O'Brien, M. E. Thompson , S. R. Forrest, Excitonic Singlet-triplet Ratio in A Semiconducting Organic Thin Film, Physical Review B, 60, 14422-14428 (1999).
    [39] M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha , Z. V. Vardeny, Correction: Formation Cross-sections of Singlet And Triplet Excitons in π-conjugated Polymers, Nature, 411, 617-617 (2001).
    [40] R. J. Holmes, B. W. D'Andrade, S. R. Forrest, X. Ren, J. Li , M. E. Thompson, Efficient, Deep-blue Organic Electrophosphorescence by Guest Charge Trapping, Applied Physics Letters, 83, 3818-3820 (2003).
    [41] H. F. Chen, L. C. Chi, W. Y. Hung, W. J. Chen, T. Y. Hwu, Y. H. Chen, S. H. Chou, E. Mondal, Y. H. Liu , K. T. Wong, Carbazole and Benzimidazole/oxadiazole Hybrids as Bipolar Host Materials for Sky Blue, Green, and Red PhOLEDs, Organic Electronics, 13, 2671-2681 (2012).
    [42] M. M. Mossoba, K. Makino, P. Riesz , R. C. Perkins, Long-range Proton Hyperfine Coupling in Alicyclic Nitroxide Radicals by Electron Paramagnetic Resonance, The Journal of Physical Chemistry, 88, 4717-4723 (1984).
    [43] X. Gong, M. R. Robinson, J. C. Ostrowski, D. Moses, G. C. Bazan , A. J. Heeger, High-efficiency Polymer-based Electrophosphorescent Devices, Advanced Materials, 14, 581-585 (2001).
    [44] Z. Fan, H. Zhao, N. Li, Y. Quan, Q. Chen, S. Ye, S. Li, Y. Wang, Q. Fan , W. Huang, Tuning Charge Balance in Solution-Processable Bipolar Triphenylamine-diazafluorene Host Materials for Phosphorescent Devices, ACS Applied Materials & Interfaces, 7, 9445-9452 (2015).
    [45] A. B. Padmaperuma, L. S. Sapochak , P. E. Burrows, New Charge Transporting Host Material for Short Wavelength Organic Electrophosphorescence:  2,7-Bis(diphenylphosphine oxide)-9,9-dimethylfluorene, Chemistry of Materials, 18, 2389-2396 (2006).
    [46] T. Tsuji, S. Kawami, T. Miyaguchi, T. Naijo, T. Yuki, S. Matsuo , H. Miyazaki, Proceedings & digests, USA: SID Press (2004).
    [47] Y. Tao, Q. Wang, C. Yang, Z. Zheng, T. Zou, J. Qin , D. Ma, A Simple Carbazole/Oxadiazole Hybrid Molecule: An Excellent Bipolar Host for Green and Red Phosphorescent OLEDs, Angewandte Chemie International Edition, 47, 8104-8107 (2008).
    [48] J. Tang, Y. Chen, L. Cong, B. Lin , Y. Sun, Novel Tri-carbazole Modified Fluorene Host Material for Highly Efficient Solution-Processed Blue and Green Electrophosphorescent Devices, Tetrahedron, 70, 3847-3853 (2014).
    [49] W.-C. Lin, H.-W. Lin, E. Mondal , K.-T. Wong, Efficient Solution-Processed Green and White Phosphorescence Organic Light-emitting Diodes Based on Bipolar Host Materials, Organic Electronics, 17, 1-8 (2015).
    [50] T. Sajoto, P. I. Djurovich, A. Tamayo, M. Yousufuddin, R. Bau, M. E. Thompson, R. J. Holmes , S. R. Forrest, Inorganic Chemistry, 44, 7992-8003 (2005).
    [51] N. Rehmann, D. Hertel, K. Meerholz, H. Becker , S. Heun, Highly Efficient Solution-processed Phosphorescent Multilayer Organic Light-emitting Diodes Based on Small-molecule Hosts, Applied Physics Letters, 91, 103507 (2007).
    [52] C. Jiang, W. Yang, J. Peng, S. Xiao , Y. Cao, High-efficiency, Saturated Red-Phosphorescent Polymer Light-Emitting Diodes Based on Conjugated and Non-conjugated Polymers Doped with an Ir Complex, Advanced Materials, 16, 537-541 (2004).
    [53] T. Earmme, E. Ahmed , S. A. Jenekhe, Solution-processed Highly Efficient Blue Phosphorescent Polymer Light-emitting Diodes Enabled by a New Electron Transport Material, Advanced Materials, 22, 4744-4748 (2010).
    [54] T. Earmme , S. A. Jenekhe, Solution-processed, Alkali Metal-salt-doped, Electron-transport Layers for High-performance Phosphorescent Organic Light-Emitting Diodes, Advanced Functional Materials, 22, 5126-5136 (2012).
    [55] K. S. Yook , J. Y. Lee, Small Molecule Host Materials for Solution Processed Phosphorescent Organic Light-Emitting Diodes, Advanced Materials, 26, 4218-4233 (2014).
    [56] J. Lee, N. Chopra, S. H. Eom, Y. Zheng , J. Xue, Effects of triplet energies and transporting properties of carrier transporting materials on blue phosphorescent organic light emitting devices, Applied Physics Letters, 93, 123306 (2008).
    [57] S. Lamansky, R. C. Kwong, M. Nugent, P. I. Djurovich , M. E. Thompson, Molecularly doped polymer light emitting diodes utilizing phosphorescent Pt(II) and Ir(III) dopants, Organic Electronics, 2, 53-62 (2001).
    [58] S. Lamansky, P. I. Djurovich, F. Abdel-Razzaq, S. Garon, D. L. Murphy , M. E. Thompson, Cyclometalated Ir Complexes in Polymer Organic Light-emitting Devices, Journal of Applied Physics, 92, 1570 (2002).
    [59] Y. T. Lee, Y. T. Chang, M. T. Lee, P. H. Chiang, C. T. Chen , C. T. Chen, Journal of Materials Chemistry C, 2, 382-391 (2014).
    [60] X. Xu, S. Ye, B. He, B. Chen, J. Xiang, J. Zhou, P. Lu, Z. Zhao , H. Qiu, Dimesitylboryl-functionalized Fluorene Derivatives: Promising Luminophors with Good Electron-transporting Ability for Deep Blue Organic Light-emitting Diodes, Dyes and Pigments, 101, 136-141 (2014).
    [61] J. F. Rusling , S. L. Suib, Characterizing Materials with Cyclic Voltammetry, Advanced Materials, 6, 922-930 (1994).
    [62] C. W. Yang , Y. Chen (2014) Bipolar Electrophosphorescent Host Materials Composed of Carbazole and Oxadiazole or Triazole: Synthesis, Characterization and Optoelectronic Applications, National Cheng Kung University.
    [63] M. H. Tsai, Y. H. Hong, C. H. Chang, H. C. Su, C. C. Wu, A. Matoliukstyte, J. Simokaitiene, S. Grigalevicius, J. V. Grazulevicius , C. P. Hsu, 3-(9-Carbazolyl)carbazoles and 3,6-Di(9-carbazolyl)carbazoles as Effective Host Materials for Efficient Blue Organic Electrophosphorescence, Advanced Materials, 19, 862-866 (2007).
    [64] M. S. Lin, S. J. Yang, H. W. Chang, Y. H. Huang, Y. T. Tsai, C. C. Wu, S. H. Chou, E. Mondal , K. T. Wong, Incorporation of a CN Group into mCP: a New Bipolar Host Material for Highly Efficient Blue and White Electrophosphorescent Devices, Journal of Materials Chemistry, 22, 16114-16120 (2012).
    [65] Y. Lin, Y. Chen, T.-L. Ye, Z.-K. Chen, Y.-F. Dai , D.-G. Ma, Oligofluorene-based Push-pull Type Functional Materials for Blue Light-emitting Diodes, Journal of Photochemistry and Photobiology a-Chemistry, 230, 55-64 (2012).
    [66] V. Promarak, A. Punkvuang, T. Sudyoadsuk, S. Jungsuttiwong, S. Saengsuwan, T. Keawin , K. Sirithip, Synthesis and Characterization of N-carbazole End-capped Oligofluorene-thiophenes, Tetrahedron, 63, 8881-8890 (2007).
    [67] O. Usluer, S. Demic, D. A. M. Egbe, E. Birckner, C. Tozlu, A. Pivrikas, A. M. Ramil , N. S. Sariciftci, Fluorene-Carbazole Dendrimers: Synthesis, Thermal, Photophysical and Electroluminescent Device Properties Advanced Functional Materials, 20, 4152-4161 (2010).
    [68] C. W. Lee , J. Y. Lee, Above 30% External Quantum Efficiency in Blue Phosphorescent Organic Light-Emitting Diodes Using Pyrido [2,3-b]indole Derivatives as Host Materials, Advanced Materials, 25, 5450-5454 (2013).
    [69] T. Youtian, W. Qiang, Y. Chuluo, Z. Cheng, Z. Kai, Q. Jingui , M. Dongge, Tuning the Optoelectronic Properties of Carbazole/Oxadiazole Hybrids through Linkage Modes: Hosts for Highly Efficient Green Electrophosphorescence, Advanced Functional Materials, 20, 304-311 (2010).
    [70] J. Huang, W. J. Hou, J. H. Li, G. Li , Y. Yang, Improving the Power Efficiency of White Light-emitting Diode by Doping Electron Transport Material, Applied Physics Letters, 89, 133509 (2006).
    [71] H. Zhang, X. Wan, X. Xue, Y. Li, A. Yu , Y. Chen, Selective Tuning of the HOMO-LUMO Gap of Carbazole-based Donor-Acceptor-Donor Compounds toward Different Emission Colors, European Journal of Organic Chemistry, 2010, 1681-1687 (2010).
    [72] C. L. Lee, K. B. Lee , J. J. Kim, Polymer Phosphorescent Light-emitting Devices Doped with Tris(2-phenylpyridine) Iridium as a Triplet Emitter, Applied Physics Letters, 77, 2280-2282 (2000).
    [73] K. M. Yeh, C. C. Lee , Y. Chen, Poly(4-vinyltriphenylamine): Optical, Electrochemical Properties and Its New Application as a Host Material of Green Phosphorescent Ir(ppy)3 Dopant, Synthetic Metals, 158, 565-571 (2008).
    [74] C. C. Lee, K. M. Yeh , C. Yun, New Host Homopolymers Containing Pendant Triphenylamine Derivatives: Synthesis, Optical, Electrochemical Properties and Its Blend with Ir(ppy)3 for Green Phosphorescent Organic Light-Emitting Devices, Journal of Polymer Science Part a-Polymer Chemistry, 46, 7960-7971 (2008).
    [75] H. Shi, D. Xin, X. Dong, J.-x. Dai, X. Wu, Y. Miao, L. Fang, H. Wang , M. M. F. Choi, A Star-shaped Bipolar Host Material Based on Carbazole and Dimesitylboron Moieties for Fabrication of Highly Efficient Red, Green and Blue Electrophosphorescent Devices, Journal of Materials Chemistry C, 2, 2160-2168 (2014).
    [76] S. Gong, Y. Chen, J. Luo, C. Yang, C. Zhong, J. Qin , D. Ma, Bipolar Tetraarylsilanes as Universal Hosts for Blue, Green, Orange, and White Electrophosphorescence with High Efficiency and Low Efficiency Roll-off, Advanced Functional Materials, 21, 1168-1178 (2011).
    [77] T. Liu, H. Sun, C. Fan, D. Ma, C. Zhong , C. Yang, High Efficiency Blue PhOLEDs Using Spiro-annulated Triphenylamine/fluorene Hybrids as Host Materials with High Triplet Energy, High HOMO Level and High Tg, Organic Electronics, 15, 3568-3576 (2014).
    [78] T. P. I. Saragi, T. Spehr, A. Siebert, T. Fuhrmann-Lieker , J. Salbeck, Spiro Compounds for Organic Optoelectronics, Chemical Reviews, 107, 1011-1065 (2007).
    [79] 何孟寰, 黃孝文 , 陳金鑫, 有機電激磷光材料與OLED磷光元件之發展近況, CHEMISTRY, 63, 443-462 (2005).
    [80] V. Jankus, K. Abdullah, G. C. Griffiths, H. Al-Attar, Y. Zheng, M. R. Bryce , A. P. Monkman, The Role of Exciplex States in Phosphorescent OLEDs with Poly(vinylcarbazole) (PVK) Host, Organic Electronics, 20, 97-102 (2015).
    [81] D. Meunmart, N. Prachumrak, T. Keawin, S. Jungsuttiwong, T. Sudyoadsuk , V. Promark, Bis(4-diphenylaminophenyl)carbazole End-capped Fluorene as Solution-processed Deep-blue Light-emitting and Hole-transporting Materials for Electroluminescent Devices, Tetrahedron Letters, 53, 3615-3618 (2012).
    [82] M. Kim , J. Y. Lee, Engineering the Substitution Position of Diphenylphosphine Oxide at Carbazole for Thermal Stability and High External Quantum Efficiency Above 30% in Blue Phosphorescent Organic Light-Emitting Diodes, Advanced Functional Materials, 24, 4164-4169 (2014).
    [83] H. F. Chen, L. C. Chi, W. Y. Hung, W. J. Chen, T. Y. Hwu, Y. H. Chen, S. H. Chou, E. Mondal, Y. H. Liu , K. T. Wong, Carbazole and Benzimidazole/oxadiazole Hybrids as Bipolar Host Materials for Sky Blue, Green, and Red PhOLEDs, Organic Electronics, 13, 2671-2681 (2012).

    下載圖示 校內:2015-12-31公開
    校外:2020-07-24公開
    QR CODE