簡易檢索 / 詳目顯示

研究生: 蔡雨均
Tsai, Yu-Chun
論文名稱: 不同外徑/壁厚比圓孔管在循環彎曲負載下平均曲率對圓孔管響應之理論研究
Theoretical Analysis of Mean Curvature Effect on the Behavior of Round-hole Tubes with Different Diameter-to-Thickness Ratios under Cyclic Bending
指導教授: 潘文峰
Pang, Wen-Fung
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 65
中文關鍵詞: 6061-T6鋁合金圓孔管外徑/壁厚比橢圓化曲率比循環彎曲有限元素ANSYS分析彎矩曲率
外文關鍵詞: Round-Hole Tubes, Finite Element Analysis, Mean Curvature, Cyclic Bending, Moment, Curvature, Curvature Ratio, Ovalization
相關次數: 點閱:111下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是利用有限元素分析軟體ANSYS Workbench 2021 R1來模擬不同外徑/壁厚比與不同圓孔直徑的6061-T6鋁合金圓孔管在不同曲率比(最小曲率/最大曲率)循環彎曲負載下的力學行為,相關的力學行為有彎矩-曲率與橢圓化-曲率的關係。其中所探討三種不同外徑/壁厚比分別為:16.5、31.0及60.0,五種不同圓孔直徑分別為:2、4、6、8及10mm,而四種不同的曲率比分別為: -1、-0.5、0及+0.5。本研究外徑/壁厚比16.5與31.0的6061-T6鋁合金圓孔管,最大曲率控制為+0.5m^(-1),至於外徑/壁厚比60.0的6061-T6鋁合金圓孔管,由於管壁較薄,所以最大曲率控制為+0.4m^(-1)。由蘇揮凱[19]的實驗與ANSYS分析的結果顯示,在固定外徑/壁厚比與曲率比的情況下,圓孔直徑大小對彎矩-曲率的關係沒有太大的影響,但對橢圓化-曲率的關係有強烈的影響,且圓孔直徑愈大橢圓化增加就愈快。在三種外徑/壁厚比的6061-T6鋁合金圓孔管皆發現,當曲率比為-1時,循環彎矩-曲率的關係從第一圈開始便呈現一個彈-塑性的穩定迴圈,而橢圓化-曲率關係則呈現不對稱、棘齒與蝴蝶狀的增加趨勢。另外,當曲率比為-0.5、0與+0.5時,循環彎矩-曲率關係從第二圈開始即呈現一彈性的線性重疊路徑,且隨著循環圈數的增加,路徑會有些許鬆弛後接著呈現一個穩定的線性重疊路徑,因變形幅度皆在彈性的範圍內,因此橢圓化-曲率關係趨勢呈非常緩慢的增加。最後,有限元素ANSYS分析結果與實驗結果相互比較後可發現,有限元素ANSYS分析可以合理的描述實驗結果。

    In this study, the finite element software ANSYS workbench 2021 R1 is used to analyze the response of 6061-T6 aluminum alloy round-hole tubes with different diameter-to-thickness ratios subjected to cyclic bending with different curvature ratios. Before analyzing, we need to substitute the parameters into the ANSYS software such as material properties, model of the round-hole tube, size of meshes, boundary and loading conditions of the model. The five different hole diameters are 2, 4, 6, 8 and 10 mm. Three different diameter-to-thickness ratios are 16.5, 31.0 and 60.0. To highlight the influence of mean curvature effect, four different curvature ratios (minimum curvature/maximum curvature) are used in this study. The curvature ratios are -1, -0.5, 0 and +0.5. The response includes the moment-curvature and ovalization-curvature relationships. For the diameter-to-thickness ratios of 16.5 and 31.0, the curvature controls between -0.5m^(-1)to +0.5 m^(-1). When the curvature ratio is -1, the curvature controls at -0.5~+0.5 m^(-1). When the curvature ratio is -0.5, the curvature controls at-0.25~+0.5〖 m〗^(-1). When the curvature ratio is 0, the curvature controls at 0~+0.5 m^(-1). When the curvature ratio is +0.5, the curvature controls at +0.25~+0.5 m^(-1). In addition, for the diameter-to-thickness ratio of 60.0, the curvature controls between -0.4 m^(-1) to +0.4 m^(-1). When the curvature ratio is -1, the curvature controls at -0.4~+0.4 m^(-1). When the curvature ratio is -0.5, the curvature controls at-0.2~+0.4 m^(-1). When the curvature ratio is 0, the curvature controls at 0~+0.4〖 m〗^(-1). When the curvature ratio is +0.5, the curvature controls at +0.2~+0.4〖 m〗^(-1). According to the experimental and analysis results, the hole diameter has almost no influence on the moment-curvature relationship but has strong influence on the ovalizaton-curvature relationship. Moreover, the larger the hole diameter is, the faster the ovalizaton increases. When the curvature ratio = -1, the moment-curvature relationship shows a stable loop from the first bending cycle. As for the ovalization-curvature relationships, it shows an increasing asymmetrical, ratchetting and bow-shape trend. However, when the curvature ratio = -0.5, 0 or +0.5, moment-curvature relationship presents an elastic linear overlapping path from the second bending cycle. And the ovalization-curvature relationship increases slowly because the deformation range is all within the elastic range.

    摘要 i 誌謝 xxix 目錄 xxx 圖目錄 xxxii 表目錄 xxxv 符號說明 xxxvi 第一章 緒論 1 1-1研究動機 1 1-2文獻回顧 1 1-3研究目的 7 第二章 基本理論 9 2-1彈塑性變形理論 9 2-2有限元素法 14 2-3有限元素分析軟體ANSYS Workbench 2021 R1介紹 17 2-3-1預處理(pre-processing) 17 2-3-2有限元素分析 19 2-3-3後處理(post-processing) 21 第三章 ANSYS Workbench分析 22 3-1材料參數設定 22 3-2有限元素模型建立 24 3-2-1幾何模型 24 3-2-2網格元素 25 3-2-3網格設定 26 3-4求解條件與設定 33 第四章 分析結果 37 4-1實驗介紹 37 4-2彎矩與曲率之關係 38 4-2-1實驗結果 38 4-2-2 ANSYS分析結果 43 4-3曲率與橢圓化之關係 47 4-3-1實驗結果 47 4-3-2 ANSYS分析結果 54 第五章 結論 61 參考文獻 63

    1. W. F. Pan, T. R. Wang and C. M. Hsu, “A curvature-ovalization measurement apparatus for circular tubes under cyclic bending”, Experimental Mechanics, Vol. 38, No. 2, pp. 99-102 (1998).
    2. 張高華、李國龍和潘文峰,”圓管承受循環彎曲負載截面變形量測器之設計”,技術學刊,第二十三卷,第一期,21-28頁(2008)。
    3. K. L. Lee, C. Y. Hung and W. F. Pan, “CCD digital camera system for measuring curvature and ovalization of each cross-section of circular tube under cyclic bending”, Journal of Chinese Institute Engineers, Vol. 34, No. 1, pp. 75-86 (2011).
    4. K. L. Lee, C. Y. Hung, H. Y. Chang and W. F. Pan, “Buckling life estimation of circular tubes of different materials under cyclic bending”, Journal of Chinese Institute Engineers, Vol. 33, No. 2, pp. 177-189 (2010).
    5. K. L. Lee, W. F. Pan and J. N. Kuo, “The influence of the diameter-to-thickness ratio on the stability of circular tubes under cyclic bending”, International Journal of Solids and Structures, Vol. 38, No. 14, pp. 2401-2413 (2001).
    6. S. Kyriakides and P. K. Shaw, “Inelastic buckling of tubes under cyclic loads”, Journal of Pressure Vessel Technology, Vol. 109, No. 2, pp. 169-178 (1987).
    7. K. L. Lee, C. Y. Hung and W. F. Pan, Variation of ovalization for sharp-notched circular tubes under cyclic bending, Journal of Mechanics, Vol. 26, No. 3, pp. 403- 411 (2010).
    8. K. H. Chang and W. F. Pan, “Buckling life estimation of circular tubes under cyclic bending”, International Journal of Solids and Structures, Vol. 46, No. 2, pp. 254-270 (2009).
    9. C. C. Chung, K. L. Lee and W. F. Pan, “Collapse of sharp-notched 6061-T6 aluminum alloy tubes under cyclic bending”, International Journal of Structural Stability and Dynamics, Vol. 16, No. 7, 1550035 [24 pages] (2016).
    10. 陳昱安,有多餘圓孔的圓孔管在循環彎曲負載下行為與失效之實驗研究,國立成功大學工程科學研究所碩士論文(2020)。
    11. W. F. Pan and Y. S. Her, “Viscoplastic collapse of thin-walled tubes under cyclic bending”, ASME Journal of Engineering Materials and Technology, Vol. 120, No. 4, pp. 287-290 (1998).
    12. W. F. Pan and C. H. Fan, “An experimental study on the effect of curvature-rate at preloading stage on subsequent creep or relaxation of thin-walled tubes under pure bending”, JSME International Journal, Series A, Vol. 41, No. 4, pp. 525-531 (1998).
    13. W. F. Pan and K. L. Lee, “The effect of mean curvature on the response and collapse of thin-walled tubes under cyclic bending”, JSME International Journal, Series A, Vol. 45, No. 2, pp. 309-318 (2002).
    14. K. H. Chang, W. F. Pan and K. L. Lee, “Mean moment effect on circular thin-walled tubes under cyclic bending”, Structural Engineering and Mechanics, Vol. 28, No. 5, pp. 495-514 (2008).
    15. C. C. Chung, K. L. Lee and W. F. Pan, Finite element analysis on the response of 6061-T6 aluminum alloy tubes with a local sharp cut under cyclic bending, Journal of Vibroengineering, Vol. 18, No. 7, pp. 4276-4284 (2016).
    16. 吳尚儒,有限元素法分析圓孔管在循環彎曲負載下之行為,國立成功大學工程科學研究所碩士論文(2018)。
    17. 汪芊蓉,有多餘圓孔的圓孔管在循環彎曲負載下行為之理論分析,國立成功大學工程科學研究所碩士論文(2020)。
    18. 劉耕嘉,循環彎曲負載下平均曲率對圓孔管響應與失效影響之理論分析,國立成功大學工程科學研究所碩士論文(2021)。
    19. 蘇暉凱,不同外徑/壁厚比圓孔管在循環彎曲負載下平均曲率對響應與失效影響之研究,國立成功大學工程科學研究所碩士論文(2022)。

    無法下載圖示 校內:2027-08-30公開
    校外:2027-08-30公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE