簡易檢索 / 詳目顯示

研究生: 張睿軒
Chang, Ruei-Syuan
論文名稱: 以Hermitian C2微分再生核無網格適點方法進行功能性微板之三維撓曲分析
A Hermitian C2 Differential Reproducing Kernel Meshless Point Collocation Method for the 3D Size-Dependent Static Bending Analysis of Functionally Graded Microplates
指導教授: 吳致平
Wu, Chih-Ping
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 68
中文關鍵詞: 協合應力偶理論微分再生核無網格方法微板適點法三維尺寸效應分析靜態撓曲
外文關鍵詞: consistent couple stress theory, differential reproducing kernel meshless method, microplate, point collocation method, three-dimensional size-dependent analysis, static bending
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究基於協合應力偶理論(Consistent couple stress theory, CCST),發展出一套Hermitian C² 微分再生核(Differential reproducing kernel, DRK)無網格方法,此方法選定位移與橫向應力以及其一階與二階導數作為主要變數,利用加權最小二乘法直接計算結果,無需對內插函數直接進行微分。此方法所構建之形狀函數由滿足再生條件的擴增函數(Enrichment functions),以及符合Kronecker delta性質之原始函數(Primitive functions)所組成,使得形狀函數及其一階與二階導數皆滿足Kronecker delta性質,且在取樣節點上的主要變數、一階與二階導數都具備連續性。本文結合Hermitian C² DRK無網格方法與強形式CCST理論,進一步發展出一套無網格適點法(Point collocation method),進行簡支承功能梯度(Functionally graded, FG)微板受外力載重作用下之三維尺寸效應之靜態撓曲分析。本文透過與文獻中精確解之比較,驗證其具備良好的準確性與收斂性,並進行參數分析與討論,探討材料尺度參數、非均質性指數與寬厚比等關鍵因子對微板撓度、面內應力、橫向應力及應力偶之影響。研究結果顯示,Hermitian C² DRK無網格方法在強形式CCST尺寸效應微板表現出良好的準確度,在參數分析中,材料尺度參數和非均質性指數增加或是寬厚比降低會使微板整體勁度增加,導致撓度降低。此外,功能性梯度微板的應力與應力偶在厚度方向呈現高次多項式分布,且橫向應力最大值位於微板上半部,其應力偶變化大於均質材料。而均質微板之面內應力呈線性分布,橫向應力分布則為拋物線,最大值位於中平面。此類應力的分布情況研究於現有文獻中較為少見。因此,本研究之分析結果可以做為各類微板理論的驗證依據,亦可提供進一步發展高階剪應變微板理論時之假設參考。

    This study presents a Hermitian C² differential reproducing kernel (DRK) meshless method within the framework of strong-form consistent couple stress theory (CCST) for analyzing size-dependent behavior in functionally graded (FG) microplates. Displacement, transverse stress, and their first and second derivatives are used as primary variables, with solutions computed via a weighted least-squares approach that avoids explicit differentiation of interpolation functions. The constructed shape functions satisfy the Kronecker delta property up to second-order derivatives, enabling accurate enforcement of boundary conditions.
    A point collocation meshless method is developed and applied to the static bending analysis of simply supported FG microplates under mechanical loading, accounting for three-dimensional size effects. The method's accuracy and convergence are validated against exact solutions, and a parametric study is conducted to examine the effects of material length scale, inhomogeneity index, and aspect ratio.
    Results show that FG microplates exhibit high-order stress and couple stress distributions across the thickness, with transverse stress peaking near the upper surface and greater couple stress variation compared to homogeneous plates. In contrast, homogeneous microplates display linear in-plane stress and parabolic transverse stress distributions, with maxima at the mid-plane. The distribution of this type of stress has been rarely investigated in existing literature. Therefore, the analytical results of this study can serve as a benchmark for validating various microplate theories and also provide a reference for assumptions in the further development of higher-order shear deformation microplate theories.

    摘要I Extended Abstract II 誌謝 VI 目錄 VII 表目錄 VIII 圖目錄 IX 變數符號表 X 第一章 緒論 1 第二章 Hermitian C2微分再生核無網格法 6 2.1 Hermitian C2微分再生核內插函數 6 2.2 Hermitian C2微分再生核內插函數之導數 10 2.3 函數與參數設計 15 第三章 三維微板靜態撓曲分析 18 3.1 CCST擬狀態空間法 18 3.2傅立葉級數展開法 22 3.3基於Hermitian C2微分再生核無網格法之適點法 24 第四章 數值範例 28 4.1 理論驗證與比較 28 4.2 參數分析 31 第五章 結論 34 參考文獻 36

    [1] Y. Fu, H. Du, and S. Zhang, Functionally graded TiN/TiNi shape memory film, Mater. Lett. vol. 57, no. 20, pp. 2995-2999, 2003.
    [2] M. Rahaeifard, M.H. Kahrobaiyan, and M.T. Ahmadian, Sensitivity analysis of atomic force microscope cantilever made of functionally graded materials, In: 3rd International Conference on micro- and nanosystems, DETC2009-86254, pp. 539-544, 2009.
    [3] A. Mitvrouw and A. Mehta, The use of functionally graded poly-SiGe layers for MEMS applications, Mater. Sci. Forum vol. 492-493, pp. 255-260, 2005.
    [4] D.C.C. Lam, F. Yang, A.C.M. Chong, J. Wang, and P. Tong, Experiments and theory in strain gradient elasticity, J. Mech. Phys. Solids, vol. 51, no. 8, pp. 1477-1508, 2003.
    [5] M.R. Wisnom, Size effects in testing of fibre-composite materials, Compos. Sci. Technol., vol. 59, no. 13, pp. 1937-1957, 1999.
    [6] J.P. Wilcoxon and G.A. Samara, Strong quantum-size effects in a layered semiconductor: MoS2 nanocluster, Phys. Rev. B, vol. 51, pp. 7299-7302, 1995.
    [7] N.A. Fleck, G.M. Muller, M.F. Ashby, and J.W. Hutchinson, Strain gradient plasticity: Theory and experiment, Acta Metallurgica Materialia, 42, pp. 475–487, 1994.
    [8] Q. Ma and D. R. Clarke, Size dependent hardness of silver single crystals, Journal of Materials Research, 10(4), pp. 853–863, 1995.
    [9] J.S. Stolken and A.G. Evans, A microbend test method for measuring the plasticity length scale, Acta Materialia, 46, pp. 5109–5115, 1998.
    [10] A.C.M. Chong and D.C.C. Lam, Strain gradient plasticity effect in indentation hardness of polymers, Journal of Materials Research, 14(10), pp. 4103–4110, 1999.
    [11] W.T. Koiter, Couple stresses in the theory of elasticity, I and II, Trans. Roy. Soc. London B, vol. 67, pp. 17-44, 1964. https://sid. ir/paper/605637/en.
    [12] R.D. Mindlin and H.F. Tiersten, Effects of couple-stresses in linear elasticity, Arch. Ration. Mech. Anal., vol. 11, no. 1, pp. 415-448, 1962. https://sid. ir/paper/605636/en.
    [13] R.A. Toupin, Elastic materials with couple-stresses, Arch. Ration. Mech. Anal., vol. 11, no. 1, pp. 385-414, 1962. https://hal.science/hal-00852443.
    [14] A.C. Eringen, Nonlocal Continuum Field Theories, Springer Verlag, New York, 2002.
    [15] A.C. Aifantis, Strain gradient interpretation of size effects. In: Z.P. Bažant and Y.D.S. Rajapakse (eds), Fracture Scaling. Springer, Dordrecht. Vol. 95, pp. 299-314, 1999.
    [16] A.C. Eringen, Linear theory of micropolar elasticity, J. Math. Mech., vol. 15, no. 6, pp. 909-923, 1966. https://www.Jstor.org/stable/24901442.
    [17] M. Ferrari, V.T. Granik, A. Imam, and J.C. Nadeau, Advances in Doublet Mechanics, Springer-Verlag, Germany, 1997.
    [18] F. Yang, A.C.M. Chong, D.C.C. Lam, and P. Tong, Couple stress-based strain gradient theory for elasticity, Int. J. Solids Struct., vol. 39, no. 10, pp. 2731-2743, 2002.
    [19] A.R. Hadjesfandiari and G.F. Dargush, Couple stress theory for solids, Int. J. Solids Struct., vol. 48, no. 18, pp. 2496-2510, 2011.
    [20] A.R. Hadjesfandiari and G.F. Dargush, Fundamental solutions for isotropic size-dependent couple stress elasticity, Int. J. Solids Struct., vol. 50, no. 9, pp. 1253-1265, 2013.
    [21] L. Yin, Q. Qian, L. Wang, and W. Xia, Vibration analysis of microscale plates based on modified couple stress theory, Acta Mechanica Solida Sinica, 23, pp. 386–393, 2010.
    [22] Y.T. Beni, F., Mehralian, and H. Zeighampour, The modified couple stress functionally graded cylindrical thin shell formulation, Mech. Adv. Mater. Struct., vol. 23, no. 7, pp. 791-801, 2016.
    [23] H.M. Ma, X.L. Gao, and J.N. Reddy, A non-classical Mindlin plate model based on a modified couple stress theory, Acta Mech., vol. 220, pp. 217-235, 2011.
    [24] C.M.C. Roque, A.J.M. Ferreira, and J.N. Reddy, Analysis of Mindlin micro plates with a modified couple stress theory and a meshless method, Applied Mathematical Modelling, 37(7), pp. 4626–4633, 2013.
    [25] B. Zhang, Y. He, D. Liu, Z. Gan, and L. Shen, A non‑classical Mindlin plate finite element based on a modified couple stress theory, European Journal of Mechanics A/Solids, 42, pp. 63–80, 2013.
    [26] M. Arefi and M. Kiani, Magneto-electro-mechanical bending analysis of three-layered exponentially graded microplate with piezomagnetic face-sheets resting on Pasternak’s foundation via MCST, Mech. Adv. Mater. Struct., vol. 27, no. 5, pp. 383-395, 2020.
    [27] J.N. Reddy, A refined nonlinear theory of plates with transverse shear deformation, International Journal of Solids and Structures, 20(9–10), pp. 881–896, Jan 1984.
    [28] J. Lei, Y. He, B. Zhang, D. Liu, L. Shen, and S. Guo, A size-dependent FG micro-plate model incorporating higher-order shear and normal deformation effects based on a modified couple stress theory, Int. J. Mech. Sci., vol. 104, pp. 8-23, 2015.
    [29] H.T. Thai and S.E. Kim, A size-dependent functionally graded Reddy plate model based on a modified couple stress theory, Compos. Part B, vol. 45, no. 1, pp. 1636-1645, 2013.
    [30] J. Kim and J.N. Reddy, Analytical solutions for bending, vibration, and buckling of FGM plates using a couple stress-based third-order theory, Compos. Struct., vol. 103, pp. 86-98, 2013.
    [31] H.T. Thai and T.P. Vo, A size-dependent functionally graded sinusoidal plate model based on a modified couple stress theory, Compos. Struct., vol. 96, pp. 376-383, 2013.
    [32] M. Sobhy and A.M. Zenkour, A comprehensive study on the size-dependent hygrothermal analysis of exponentially graded microplates on elastic foundations, Mech. Adv. Mater. Struct. vol. 27, no. 10, pp. 816-830, 2020.
    [33] C.P. Wu and H.X. Hu, A unified size-dependent plate theory for static bending and free vibration analyses of micro- and nano-scale plates based on the consistent couple stress theory, Mech. Mater., vol. 162, 104085, 2021.
    [34] C.P. Wu and E.L. Lin, Free vibration analysis of porous functionally graded piezoelectric microplates resting on an elastic medium subjected to electric voltages, Arch. Mech., vol. 74, no. 6, pp. 463-511, 2022.
    [35] C.P. Wu and Y.S. Lyu, An asymptotic consistent couple stress theory for the three-dimensional free vibration analysis of functionally graded microplates resting on an elastic medium, Math. Methods Appl. Sci., vol. 46, no. 4, pp. 4891-4919, 2003.
    [36] T.D. Tran, C.H. Thai, and H. Nguyen-Xuan, A size-dependent functionally graded higher order plate analysis based on modified couple stress theory and moving Kriging meshfree method, CMC-Comput. Mater. Contin., vol. 57, no. 3, pp. 447-483, 2018.
    [37] C.H. Thai, A.J.M. Ferreira, J. Lee, and H. Nguyen-Xuan, An efficient size-dependent computational approach for functionally graded isotropic and sandwich microplates based on modified couple stress theory and moving Kriging-based meshfree method, Int. J. Mech. Sci., vol. 142-143, pp. 322-338, 2018.
    [38] V.S. Khorasani and M. Bayat, Bending analysis of FG plates using a general third-order plate theory with modified couple stress effect and MLPG method, Eng. Anal. Bound. Elem., vol. 94, pp. 159-171, 2018.
    [39] H.X. Nguyen, T.N. Nguyen, M. Abdel-Wahab, S.P.A. Bordas, H. Nguyen-Xuan, and T.P. Vo, A refined quasi-3D isogeometric analysis for functionally graded microplates based on the modified couple stress theory, Comput. Methods Appl. Mech. Eng., vol. 313, pp. 904-940, 2017.
    [40] C.H. Thai, A.J.M. Ferreira, T.D. Tran, and P. Phung-Van, A size-dependent quasi-3D isogeometric model for functionally graded graphene platelet-reinforced composite microplates based on the modified couple stress theory, Compos. Struct., vol. 234, 111695, 2020.
    [41] J. Qiu, S. Sahmani, and B. Safaei, On the NURBS-based isogeometric analysis for couple stress-based nonlinear instability of PFGM microplates, Mech. Based Des. Struct. Machines, vol. 51, no. 2, pp. 816-840, 2023.
    [42] Y.M. Wang, S.M. Chen, and C.P. Wu, A meshless collocation method based on the differential reproducing kernel interpolation, Comput. Mech., vol. 45, pp. 585_606, 2010.
    [43] W.K. Liu, Y. Chen, S. Jun, J.S. Chen, T. Belytschko, C. Pan, R.A. Uras, and C.T. Chang, Overview and applications of the reproducing kernel particle methods, Arch. Comput. Methods Eng., vol. 3, pp. 3-80, 1996.
    [44] S. Li and W.K. Liu, Meshfree and particle methods and their applications, Appl. Mech. Rev., vol. 55, no. 1, pp. 1-34, 2002.
    [45] C.P. Wu, J.S. Wang, and Y.M. Wang, A DRK interpolation-based collocation method for the analysis of functionally graded piezoelectric hollow cylinders under electro-mechanical loads, Comput. Model. Eng. Sci., vol. 52, no. 1, pp. 1_37, 2009. http://140.116.207.99/handle/987654321/99941.
    [46] C.P. Wu, K.H. Chiu, and Y.M. Wang, RMVT-based meshless collocation and element-free Galerkin methods for the quasi-3D analysis of multilayered composite and FGM plates, Compos. Struct., vol. 93, no. 2, pp. 1433-1448, 2011.
    [47] J.S. Chen, M. Hillman, and S.W. Chi, Meshfree methods: Progress made after 20 years, J. Eng. Mech., vol. 143, no. 4, 04017001, 2017.
    [48] R.L. Burden, Numerical Analysis. PWS Publishers, New York, 1985.
    [49] C.T. Herakovich, Mechanics of Fibrous Composites. John Wiley & Sons, Inc. New York, 1998.
    [50] C. Shu and H. Du, Implementation of clamped and simply supported boundary conditions in the GDQ free vibration analysis of beams and plates, Int. J. Solids Struct., vol. 34, no. 7, pp. 819-835, 1997.
    [51] C.W. Bert and M. Malik, Differential quadrature method in computational mechanics: a review, Appl. Mech. Rev., vol. 49, no. 1, pp. 1-27, 1996.
    [52] H. Salehipour, H. Nahvi, A. Shahidi, and H.R. Mirdamadi, 3D elasticity analytical solution for bending of FG FG micro/nanoplates resting on elastic foundation using modified couple stress theory, Appl. Math. Modell., vol. 47, pp. 174-188, 2017.
    [53] C.P. Wu and C.H. Hsu, A three-dimensional weak formulation for stress, deformation, and free vibration analyses of functionally graded microscale plates based on the consistent couple stress theory, Compos. Struct., vol. 296, 115829, 2022.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE