| 研究生: |
陳世諴 Chen, Shih-Hsien |
|---|---|
| 論文名稱: |
發電結構調整暨污染控制策略對臺灣大氣細懸浮微粒污染影響研究 Impacts on Airborne Fine Particulate Matter by Power Generation And Pollution Control Strategies in Taiwan |
| 指導教授: |
蔡俊鴻
Tsai, Jiun-Horng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 151 |
| 中文關鍵詞: | 能源結構調整 、發電設施空污排放 、排放係數 、大氣細懸浮微粒 |
| 外文關鍵詞: | Energy-fuel portfolio in power generation sector, Air pollution emissions, Emission factors, Airborne PM2.5 concentration |
| 相關次數: | 點閱:64 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要目的為解析全臺電力業空氣污染排放特徵,探討近年電力業空氣污染物排放變化趨勢,檢視國內推動新能源政策調整能源發電結構配比與污染控制策略,分析潛在影響電力業排放導致大氣細懸浮微粒濃度變化情形。研究設定目標污染物為SOx、NOx、TPM,排放設定五種情境:(A)民國107年基準情境,(B)民國114年能源政策達標情境,(C)能源政策與污染管制情境,(D)能源政策未達標情境,(E)電力業符合國外排放標準情境。研究推估各情境空氣污染排放量,並應用空氣品質模式(CMAQ)模擬全臺大氣細懸浮微粒(PM2.5)平均濃度分布,解析新能源政策與加嚴排放標準對空氣污染排放負荷與大氣PM2.5濃度潛在影響。
比較民國103年與107年全臺火力發電廠三項污染物年排放量皆呈現降低趨勢,減量比例依序為SOx(26.3%) > NOx(15.5%) > TPM(15.8%),燃煤發電機組為三項污染物主要排放源。民國107年電力業空氣污染排放總量空間分布依序為中部 > 北部 > 南部 > 東部地區。以毛發電量設定為活動強度,民國103及107年平均排放係數整體排序皆為燃油 > 燃煤 > 燃氣發電機組,燃煤與燃氣機組排放係數平均值於民國107年皆低於103年。103年燃油機組排放係數範圍:SOx(1159.0 – 1913.7)、NOx(396.3 - 835.7)、TPM(50.7 – 61.4);燃煤機組範圍:SOx(105.3 – 742.4)、NOx(234.7 – 1093.4)、TPM(22.9 – 49.2);燃氣機組範圍:SOx(0.1 – 21.3)、NOx(56.1 – 1121.7)、TPM(3.3 – 45.6)。107年燃油機組排放係數範圍:SOx(1073.1 - 1283.6)、NOx(695.5 - 900.2)、TPM(56.4);燃煤機組範圍:SOx(80.3 - 411.8)、NOx(107.3 - 408.3)、TPM(2.9 - 43.6);燃氣機組範圍:SOx(0.1 - 19.3)、NOx(71.7 - 402.7)、TPM(2.1 - 43.3)。研究解析103及107年污染物平均值與最大、最小值排放係數變化情形,顯示排放係數主要影響條件為機組更新、使用燃料成分與機組污染控制效率。
比較本研究設定五種情境電力業排放量推估結果,全臺電力業SOx排放量排序為:情境A(32318.4噸) > D(22968.5噸) > B(22284.6噸) > E(19437.5噸) > C(14101.3噸);NOx排放量排序為:情境A(57982.3噸) > D(55013.1噸) > B(53153.0噸) > E(53092.7噸) > C(33986.0噸);TPM排放量排序為:情境E(5998.3噸) > A(5282.4噸) > D(4800.1噸) > B(4618.1噸) > C(1999.5噸)。相對基準情境,情境B三項污染物減量為:SOx(52.8%)、NOx(22.6%)、TPM(29.2%);情境C減量為:SOx(79.0%)、NOx(61.2%)、TPM(87.3%),情境C所有污染物排放量皆為最低;情境D燃煤發電量高於情境B約13%,但三項污染物排放量僅相差3.9 ~ 4.3%。情境E火力發電機組TPM排放量高於情境B,SOx則低於情境B,顯示美國環保署設定SOx之排放標準相對TPM較為嚴格。
使用CMAQ模式模擬基準情境結果顯示呈現低估現象,模擬結果顯示大氣PM2.5平均濃度改善效益皆為情境C大於情境B,情境C全台改善平均值範圍為:0.17 ~ 0.44 μg/m3。
This research investigated the potential impacts on air pollutants emission and air borne PM2.5 concentrations in Taiwan due to alternation of energy-fuel portfolio in power generation sector and stringent emission standard. The target pollutants include particulate matter (TPM), SOx, and NOx. The results indicated that annual emissions from thermal power plants decreased 15.8%, 26.3%, and 15.5%, respectively, from 2014 to 2018. Emission factors (EF) of target pollutants (kg/MWhr) raked as oil-fired unit > coal-fired unit > gas-fired unit. EF of most coal-fired and gas-fired units declined in 2018 due to new units introduction, retrofit of existing units, fuel switch, and pollution control efficiency improvement. Emissions of five scenarios based on energy-fuel portfolio and stringent emission standard indicates that the air pollutants emission could be more reduced. The maximum reduction potential (scenario C – apply more renewable energy, clean fuel, BACT on pollution control) could be 29.2% (TPM), 52.8% (SOx), and 22.6% (NOx). Air quality model simulation indicates that ambient PM2.5 concentration could improve 0.17 ~ 0.44 μg/m3.
參考文獻
1. Abel, D., Holloway, T., Harkey, M., Rrushaj, A., Brinkman, G., Duran, P., Janssen, M. & Denholm, P. (2018). Potential air quality benefits from increased solar photovoltaic electricity generation in the eastern United States. Atmospheric Environment, 175, 65-74.
2. Guttikunda, S. K., & Jawahar, P. (2014). Atmospheric emissions and pollution from the coal-fired thermal power plants in India. Atmospheric Environment, 92, 449-460.
3. Cohan, D. S., & Douglass, C. (2011). Potential emissions reductions from grandfathered coal power plants in the United States. Energy Policy, 39(9), 4816-4822.
4. Alvarez-Herranz, A., Balsalobre-Lorente, D., Shahbaz, M., & Cantos, J. M. (2017). Energy innovation and renewable energy consumption in the correction of air pollution levels. Energy Policy, 105, 386-397.
5. Appel, K. W., Chemel, C., Roselle, S. J., Francis, X. V., Hu, R. M., Sokhi, R. S., Rao, S.T. & Galmarini, S. (2012). Examination of the Community Multiscale Air Quality (CMAQ) model performance over the North American and European domains. Atmospheric environment, 53, 142-155.
6. Blanchard, C. L., Roth, P. M., Tanenbaum, S. J., Ziman, S. D., & Seinfeld, J. H. (2000). The use of ambient measurements to identify which precursor species limit aerosol nitrate formation. Journal of the Air & Waste Management Association, 50(12), 2073-2084.
7. Buonocore, J. J., Dong, X., Spengler, J. D., Fu, J. S., & Levy, J. I. (2014). Using the Community Multiscale Air Quality (CMAQ) model to estimate public health impacts of PM2. 5 from individual power plants. Environment international, 68, 200-208.
8. Burr, M. J., & Zhang, Y. (2011). Source apportionment of fine particulate matter over the Eastern US Part I: source sensitivity simulations using CMAQ with the Brute Force method. Atmospheric Pollution Research, 2(3), 300-317.
9. Che, W., Zheng, J., Wang, S., Zhong, L., & Lau, A. (2011). Assessment of motor vehicle emission control policies using Model-3/CMAQ model for the Pearl River Delta region, China. Atmospheric Environment, 45(9), 1740-1751.
10. Chuang, M. T., Chen, Y. C., Lee, C. T., Cheng, C. H., Tsai, Y. J., Chang, S. Y., & Su, Z. S. (2016). Apportionment of the sources of high fine particulate matter concentration events in a developing aerotropolis in Taoyuan, Taiwan. Environmental pollution, 214, 273-281.
11. Chuang, M. T., Fu, J. S., Jang, C. J., Chan, C. C., Ni, P. C., & Lee, C. T. (2008). Simulation of long-range transport aerosols from the Asian Continent to Taiwan by a Southward Asian high-pressure system. Science of the total environment, 406(1-2), 168-179.
12. Cohan, D. S., & Douglass, C. (2011). Potential emissions reductions from grandfathered coal power plants in the United States. Energy Policy, 39(9), 4816-4822.
13. Guttikunda, S. K., & Jawahar, P. (2014). Atmospheric emissions and pollution from the coal-fired thermal power plants in India. Atmospheric Environment, 92, 449-460.
14. Holt, J., Selin, N. E., & Solomon, S. (2015). Changes in inorganic fine particulate matter sensitivities to precursors due to large-scale US emissions reductions. Environmental science & technology, 49(8), 4834-4841.
15. Hu, J., Huang, L., Chen, M., He, G., & Zhang, H. (2017). Impacts of power generation on air quality in China—Part II: Future scenarios. Resources, Conservation and Recycling, 121, 115-127.
16. Huang, L., Hu, J., Chen, M., & Zhang, H. (2017). Impacts of power generation on air quality in China—part I: an overview. Resources, Conservation and Recycling, 121, 103-114.
17. Kim, B. U., Kim, O., Kim, H. C., & Kim, S. (2016). Influence of fossil-fuel power plant emissions on the surface fine particulate matter in the Seoul Capital Area, South Korea. Journal of the Air & Waste Management Association, 66(9), 863-873.
18. Lam, Y. F., Fu, J. S., Wu, S., & Mickley, L. J. (2011). Impacts of future climate change and effects of biogenic emissions on surface ozone and particulate matter concentrations in the United States. Atmospheric Chemistry and Physics, 11(10), 4789-4806.
19. Li, L., Lei, Y., Wu, S., Huang, Z., Luo, J., Wang, Y., Chen, J. & Yan, D. (2018). Evaluation of future energy consumption on PM2. 5 emissions and public health economic loss in Beijing. Journal of cleaner production, 187, 1115-1128.
20. Li, N., Chen, J. P., Tsai, I. C., He, Q., Chi, S. Y., Lin, Y. C., & Fu, T. M. (2016). Potential impacts of electric vehicles on air quality in Taiwan. Science of the total environment, 566, 919-928.
21. Liu, F., Zhang, Q., Tong, D., Zheng, B., Li, M., Huo, H., & He, K. B. (2015). High-resolution inventory of technologies, activities, and emissions of coal-fired power plants in China from 1990 to 2010. Atmospheric Chemistry and Physics, 15(23), 13299-13317.
22. Nakamoto, T. (2013). Advanced AQCS Technology for Further Emission Control, Babcock-Hitachi K.K.
23. Organization for Economic Cooperation and Development/International Energy Agency. (2017) World Energy Outlook 2017
24. Qin, M., Wang, X., Hu, Y., Huang, X., He, L., Zhong, L., Hu, M. & Zhang, Y. (2015). Formation of particulate sulfate and nitrate over the Pearl River Delta in the fall: Diagnostic analysis using the Community Multiscale Air Quality model. Atmospheric Environment, 112, 81-89.
25. Russell, M. C., Belle, J. H., & Liu, Y. (2017). The impact of three recent coal-fired power plant closings on Pittsburgh air quality: A natural experiment. Journal of the Air & Waste Management Association, 67(1), 3-16.
26. Shim, C., & Hong, J. (2016). Impact of a national plan for future electricity supply on ambient air quality in South Korea. Energy Policy, 88, 278-288.
27. Wesson, K., Fann, N., Morris, M., Fox, T., & Hubbell, B. (2010). A multi–pollutant, risk–based approach to air quality management: Case study for Detroit. Atmospheric Pollution Research, 1(4), 296-304.
28. Xue, Z., Hao, J., Chai, F., Duan, N., Chen, Y., Li, J., Chen, F. Liu, S. & Pu, W. (2005). Air quality impact of the coal-fired power plants in the northern passageway of the China west-east power transmission project. Journal of the Air & Waste Management Association, 55(12), 1816-1826.
29. Zhang, H., Chen, G., Hu, J., Chen, S. H., Wiedinmyer, C., Kleeman, M., & Ying, Q. (2014). Evaluation of a seven-year air quality simulation using the Weather Research and Forecasting (WRF)/Community Multiscale Air Quality (CMAQ) models in the eastern United States. Science of the Total Environment, 473, 275-285.
30. Zhang, X. (2016). Emission standards and control of PM2.5 from coal-fired power plant. IEA Clean Coal Centre: London, UK.
31. Zhang, Y., Vijayaraghavan, K., Wen, X. Y., Snell, H. E., & Jacobson, M. Z. (2009). Probing into regional ozone and particulate matter pollution in the United States: 1. A 1 year CMAQ simulation and evaluation using surface and satellite data. Journal of Geophysical Research: Atmospheres, 114(D22).
32. Zhao, B., Wang, S., Wang, J., Fu, J. S., Liu, T., Xu, J., Xiao, F. & Hao, J. (2013). Impact of national NOx and SO2 control policies on particulate matter pollution in China. Atmospheric Environment, 77, 453-463.
33. Zhao, H., He, Y., & Shen, J. (2018). Effects of temperature on electrostatic precipitators of fine particles and SO3. Aerosol Air Qual. Res, 18, 2906-2911.
34. 工業技術研究院能源與環境研究所,(2013),汽電共生系統節能手冊
35. 台灣電力公司,(2018),106年長期電源開發方案(10610案-10701修正案)
36. 台灣電力公司,(2018),107年全國電力資源供需報告
37. 台灣電力公司,(2019),台中發電廠新建燃氣機組計畫環境影響說明書(第三次修訂本)
38. 台灣電力公司,(2019),台電環境白皮書
39. 台灣電力公司,(2019),興達電廠燃氣機組更新改建計畫環境影響說明書(第三次修訂本)
40. 行政院環境保護署,(2010),推動總量管制及細懸浮微粒管制策略
41. 行政院環境保護署,(2014),細懸浮微粒(PM2.5)管制策略研擬及減量成效分析
42. 行政院環境保護署,(2015),強化空氣品質模式制度建立計畫(第一年)
43. 行政院環境保護署,(2015),清淨空氣行動計劃
44. 行政院環境保護署,(2015),臺灣細懸浮微粒(PM2.5)成分與形成速率分析
45. 行政院環境保護署,(2016),固定污染源最佳可行控制技術
46. 行政院環境保護署,(2017),固定污染源排放管道細懸浮微粒(PM2.5)調查檢測及管制策略研訂計畫
47. 行政院環境保護署,(2017),空氣污染防制行動方案
48. 行政院環境保護署,(2017),強化空氣品質模式制度建立計畫(第二年)
49. 行政院環境保護署,(2017),細懸浮微粒與臭氧等多空氣污染物之綜合管制策略
50. 行政院環境保護署,(2018),固定污染源排放管道細懸浮微粒(PM2.5)現況調查及污染管制計畫
51. 行政院環境保護署,(2019),TEDS10.0點源技術手冊
52. 吳再益,林唐裕,侯仁義,柯亮群,黃永慧,(2012),我國能源政策發展模式及其未來方向探討,臺灣銀行季刊,第六十三卷,第二期
53. 李明曄,(2016),臺灣地區細懸浮微粒減量對策之空氣品質改善有效性評析,國立成功大學環境工程學系碩士論文
54. 林祥輝,(2015),日本新版能源基本計劃—新計畫將核能定位為重要的基載電源,推動核電廠的重新運轉,工業技術研究院綠能與環境研究所
55. 徐昕煒,(2016),2015年美國潔淨電力計畫最終版—目標2030年電力部門排放較2005年減量32%,工業技術研究院綠能與環境研究所
56. 張艮輝,陳杜甫,蔡長佑,(2016),PM2.5減量挑戰與空氣品質再升級,中華技術季刊,第四十九期
57. 張景淳,(2020),國家能源政策評析報告:韓國2019年版,工業技術研究院綠能與環境研究所
58. 梁啟源,郭博堯,鄭睿合,郭箴誠,(2015),我國電力最適能源配比之探討,財團法人中技社,專題報告2015-01
59. 郭承彬,蔡志賢,張章堂,(2017),應用CMAQ空品模式評估汽電共生燃煤排放於環境PM2.5影響-以某公司為例,細懸浮微粒(PM2.5)減量策略與控制技術專題
60. 陳永龍,王啟州,游楨德,(2019),台化汽電共生廠清潔排放及PM2.5減量改善研究成果報告
61. 雲林縣環境保護局,(2015),雲林縣細懸浮微粒(PM2.5)污染來源調查分析暨空品預警應變計畫
62. 楊映茹,(2017),臺灣大氣細懸浮微粒管制策略分析與改善有效性評估,國立成功大學環境工程學系碩士論文
63. 經濟部,(2014),103年之全國長期負載預測與電源開發規劃
64. 經濟部,(2017),能源發展綱領核定本(修正)
65. 經濟部,(2018),能源轉型白皮書(初稿)
66. 廖孟儀,馬鴻文,李孟穎,洪明龍,李佩濠,(2016),臺灣火力發電健康衝擊外部成本分析,臺灣能源期刊第三卷第三期,第277-292頁
67. 臺中市環境保護局,(2017),臺中市細懸浮微粒(PM2.5)採樣分析計畫
68. 趙家緯,(2015),美國「潔淨電力計畫」簡介—規範各州電力碳排放係數,使電力部門2030年CO2排放量削減30%,工業技術研究院綠能與環境研究所
69. 劉明德,徐玉珍,(2012),台灣亟需有遠見的再生能源政策與做法—德國經驗的啟示,國立政治大學公共行政學系,公共行政學報,第四十三期
70. 蔡履文,(2018),新燃煤發電技術—超超臨界機組,台電月刊,第六百六十四期,107年四月號
71. 蔡德明,(2006),應用Model-3/CMAQ以PC cluster研究高速公路網與電廠對南高屏地區臭氧濃度之影響,國立成功大學環境工程學系碩博士班博士論文
72. 蔡德明,賴信志,王錫豐,吳義林,(2013),火力電廠空污排放對細懸浮微粒(PM2.5)之影響與因應對策研究,台電綜合研究所
73. 談駿嵩,吳明竑,(2015),火力發電未來發展情境之探討,財團法人中技社,專題報告2013-01,第二章
74. 蕭子訓,黃孔良,葛復光,(2018),我國再生能源年發電量的評估與機率分布研究,臺灣能源期刊,第五卷,第二期
75. 賴軍佑,(2011),境外傳輸之懸浮微粒及其前驅物對台灣之長期影響模擬分析,國立雲林科技大學環境與安全衛生工程系碩士論文
76. 謝瑞豪,李睿桓,詹長權,(2016),台灣大氣中PM2.5污染濃度和污染源的時空分布,台灣醫學雙月刊,第二十卷,第四期
77. 聶士傑,(2018),臺灣細懸浮微粒管制策略對中南部大氣濃度改善有效性評析,國立成功大學環境工程學系碩士論文
78. 闕棟鴻,(2016),德國能源轉型的現況與展望—發布至2016年能源規劃藍圖,持續進行再生能源等各領域之改革,工業技術研究院綠能與環境研究所