| 研究生: |
胡純振 Lwin, Nyi Nyi |
|---|---|
| 論文名稱: |
透過曲率生成紋路分析以及數值控制工具機控制剛性板材形變 Controlled Rigid Panel Deformation by Curvature Generated Pattern Analysis and Computer Numerical Control Machining |
| 指導教授: |
吳光庭
Wu, Kwang-Tyng 柳川肯 Kane Yanagawa |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 數位製造 、減材製造 、曲率分析 、剛性板材形變 |
| 外文關鍵詞: | Digital Fabrication, Subtractive Manufacturing, Curvature Analysis, Rigid Panel Deformation |
| 相關次數: | 點閱:111 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在工業革命的影響下,建築的形式和材料之間的分界越來越明顯。隨著電腦控制的數位製造技術在建築領域的發展,我們需要重新思考材料在建築設計的過程中所扮演的角色和其重要性。本研究提供了一種新的方式來控制剛性板材的形變,利用曲率生成紋路分析以及數值控制工具機控制紙板形變。第一階段的研究著重於材料測試、比較和選擇,利用家具設計KERF Chair來驗證製造方法的可行性和材料的表現。第二階段的研究,基於曲率生成紋路分析的方法所製造的面板形變,應用於涼亭設計KERF Pavilion的設計方案和原型製造中,以驗證是否能實現在建築設計中有更近似於雙曲面板的呈現。研究的結果表明此製造方式有非常大的潛力,未來更進一步的研究將有助於發展此製造技術在建築行業的實際應用。
As a result of modern industrial modes of building production, the gap between form and materiality has become ever more apparent. With the adoption of CNC fabrication techniques in the field of architecture, it is critical to reconsider the role and importance of materiality in the architectural design process. The work documented in this paper presents a newly developed method of controlling rigid panel deformation by utilizing curvature generated pattern analysis and computer numerical control machining in paper pulp panels. The first research phase focused on the testing and selection of material utilizing the "KERF Chair" design as a control to confirm the feasibility and performance of the fabrication method. In the second phase, the proposed panel deformation based on curvature generated pattern analysis method of panel fabrication was applied in the design proposal and prototyping for the "KERF Pavilion" to see if a better approximation of doubly curve panels in architectural design could be achieved. The results of the research indicate that this fabrication method has great potential, though further research in the future will help to develop more practical applications of this fabrication technique within the architecture industry.
中文文獻
[1] 首創農業秸稈全稈綜合利用,永豐餘Npulp引領造紙世紀革命。Retrieved December 3, 2018, from http://www.yfy.com.tw/tw/news_659.html
[2] 袁烽。(2012)。數字化建造 新方法論驅動下的範式轉化。時代建築, (2), 74-79。
[3] 維基百科,曲率 Retrieved June 6, 2019, from https://zh.wikipedia.org/wiki/曲率
[4] 維基百科,降伏。Retrieved December 21, 2018, from https://zh.wikipedia.org/zh-tw/%E5%B1%88%E6%9C%8D
[5] 維基百科,高速鋼Retrieved January 20, 2019, from https://zh.wikipedia.org/zh-tw/%E9%AB%98%E9%80%9F%E9%8B%BC
[6] 劉育東。(2001)。數位建築的浮現。胡氏圖書。
外文文獻
[7] 3D HUBS, CNC machining: The Complete Engineering Guide. Retrieved December 2, 2018, from https://www.3dhubs.com/guides/cnc-machining/
[8] Ban, S. (1998). Paper Tube Architecture from Rwanda to Kobe.
[9] Ban, S., & Miyake, R. (2009). Shigeru Ban: Paper in Architecture. Rizzoli International publication.
[10] Bologa, O., Breaz, R. E., Racz, S. G., & Crenganiş, M. (2016). Decision-making tool for moving from 3-axes to 5-axes CNC machine-tool. Procedia Computer Science, 91, 184-192.
[11] Brownell, B. E. (2010). Transmaterial 3 a catalog of materials that redefine our physical environment. New York: Princeton Architectural Press.
[12] Bryden, D. (2014). CAD and rapid prototyping for product design. Laurence King Publ..
[13] Carbide Tipped Advantage, Hannibal Retrieved January 22, 2019, from https://www.hannibalcarbide.com/advantages/carbide-tipped.php
[14] Carbide Tipped vs. Steel, Toolstoday Retrieved January 22, 2019, from https://www.toolstoday.com/g-17-carbide-tipped-vs-steel-no-contest
[15] Carpo, M. (Ed.). (2013). The digital turn in architecture 1992-2012. John Wiley & Sons.
[16] CNC cookbook, Climb Milling versus Conventional Milling. Retrieved December 25, 2018, from https://www.cnccookbook.com/climb-milling-versus-conventional-milling/
[17] Custompartnet, Milling Step-over Distance Calculator. Retrieved December 28, 2018, from https://www.custompartnet.com/calculator/step-over-distance
[18] Cutter Types (Mill), Shoutwiki Retrieved January 23, 2019, from http://mindworks.shoutwiki.com/wiki/Cutter_Types_(Mill)
[19] Cutter Types (Mill), Shoutwiki Retrieved January 23, 2019, from http://mindworks.shoutwiki.com/wiki/Cutter_Types_(Mill)
[20] Erdim, H., Lazoglu, I., & Ozturk, B. (2006). Feedrate scheduling strategies for free-form surfaces. International Journal of Machine Tools and Manufacture, 46(7-8), 747-757.
[21] Habibi, M., Arezoo, B., & Nojedeh, M. V. (2011). Tool deflection and geometrical error compensation by tool path modification. International Journal of Machine Tools and Manufacture, 51(6), 439-449.
[22] Kumar, N. S., Shetty, A., Shetty, A., Ananth, K., & Shetty, H. (2012). Effect of spindle speed and feed rate on surface roughness of Carbon Steels in CNC turning. Procedia engineering, 38, 691-697.
[23] Lee, G., & Kim, S. (2012). Case study of mass customization of double-curved metal façade panels using a new hybrid sheet metal processing technique. Journal of construction engineering and management, 138(11), 1322-1330.
[24] M I Ahmad et al 2019 J. Phys.: Conf. Ser.1150 012015
[25] Mcneel, Curvature. Retrieved June 2, 2019, from https://docs.mcneel.com/rhino/mac/help/en-us/commands/curvature.htm
[26] Menges, A., Schwinn, T., & Krieg, O. D. (Eds.). (2016). Advancing wood architecture: a computational approach. Routledge.
[27] Minguet, Josep MariÌa., and Miquel AbellaÌn. (2011). Plus Design: Beautiful Design for Living.
[28] Multicam 3000 SERIES CNC ROUTER. Retrieved December 5, 2018, from https://www.multicam.com/3000-series-cnc-router/
[29] Oughtred, I. (1998). Clinker Plywood boatbuilding manual. Mt Barker, S. Aust.: Duck Flat Wooden Boats.
[30] Oxman, N., Ortiz, C., Gramazio, F., & Kohler, M. (2015). Material ecology.
[31] Oxman, R., & Oxman, R. (2014). Theories of the Digital in Architecture. Routledge.
[32] Pottmann, H., Asperl, A., Hofer, M., & Bentley, D. (2007). Architectural Geometry. Exton: Bentley Institute Press.
[33] Schmidt, P., & Stattmann, N. (2009). Unfolded: paper in design, art, architecture and industry. Walter de Gruyter.
[34] Selecting the Right Bit/Feeds and Speeds Charts, ShopBot Tools. Retrieved December 22, 2018, from https://static1.squarespace.com/static/59efc96d90badec50a4afa15/t/5a21f4b6e2c483bcf39a2c84/1512174775486/FeedsandSpeeds.pdf
[35] Shchurov, I. A., & Al-Taie, L. H. (2017). Constant Scallop-Height Tool Path Generation for Ball-End Mill Cutters and Three-Axis CNC Milling Machines. Procedia Engineering, 206, 1137-1141.
[36] Shelden, D. R. (2002). Digital surface representation and the constructibility of Gehry's architecture (Doctoral dissertation, Massachusetts Institute of Technology).
[37] Spence, W. P. (2006). The Home Carpenters'& Woodworkers' Repair Manual. Sterling Publishing Company, Inc..
[38] Sugie, A., & Hirokawa, J. (2010). Sozai to dezain no kyōkasho = Textbook for materials and design. Tōkyō: Nikkei BP Sha.
[39] Toromanoff, A. (2016). Chairs by architects. High Holborn, London: Thames & Hudson.
[40] Valchromat - Concept. Retrieved December 11, 2018, from http://www.valchromat.pt/content.aspx?menuid=347
[41] Wojciechowski, S., Maruda, R. W., Barrans, S., Nieslony, P., & Krolczyk, G. M. (2017). Optimisation of machining parameters during ball end milling of hardened steel with various surface inclinations. Measurement, 111, 18-28.
[42] Z bala, W., & Plaza, M. (2014). Comparative study of 3-and 5-axis CNC centers for free-form machining of difficult-to-cut material. International Journal of Production Economics, 158, 345-358.