簡易檢索 / 詳目顯示

研究生: 李欣學
Li, Sin-Syue
論文名稱: 抗PD-L1抗體透過破壞PD-L1/CD80同側異源雙合體減少活化嵌合抗原受體T細胞之存活率
Anti-PD-L1 antibody limits the survival of activated CAR T cells by disrupting the PD-L1 / CD80 cis-heterodimer
指導教授: 陳彩雲
Chen, Tsai-Yun
張孔昭
Chang, Kung-Chao
學位類別: 博士
Doctor
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 101
中文關鍵詞: 嵌合抗原受體T細胞免疫檢查點抑制劑
外文關鍵詞: chimeric antigen receptor - CAR, T cell, immune checkpoint inhibitors
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Abstract ii 摘要 iii ACKNOWLEDGEMENTS iv TABLE OF CONTENTS v LIST OF TABLES viii LIST OF FIGURES ix LIST OF SYMBOLS AND ABBREVIATIONS xi CHAPTER 1 INTRODUCTION 1 1.1 The emergence of CAR T cell therapy in cancer treatment 1 1.1.1 Early development of CAR T therapy 1 1.1.2 Clinical approval and application of CD19 CAR T cell therapy 2 1.2 Limitations of CAR T cell therapy 2 1.2.1 Antigen escape 3 1.2.2 Limited persistence and T cell exhaustion 3 1.2.3 Immunosuppressive microenvironment 5 1.2.4 The CAR and the TRUCK 6 1.3 PD‑L1/PD-1 immune checkpoints and CAR T cells 7 1.3.1 PD-1-mediated immunosuppression 7 1.3.2 CAR engineering strategies to overcome PD‑L1/PD-1-mediated suppression 8 1.4 Knowns and unknowns of combining PD‑L1 blockade with CAR T cells 9 1.4.1 PD‑L1 as a target for cancer immunotherapy 9 1.4.2 Combination of anti-PD‑L1 antibody and CD19 CAR T 10 1.4.3 Rationale of this study 11 CHAPTER 2 Material and Methods 13 2.1 Cells and culture conditions 13 2.2 Design of CAR constructs with co-expression of anti-PD‑L1 antibody fragment 14 2.3 Antibodies used in functional assays 14 2.4 Flow cytometry 15 2.5 Production of retrovirus by co-transfection 16 2.6 Activation, retroviral transduction, and enrichment of CAR T cells 16 2.7 Repetitive stimulation assay 17 2.8 Apoptosis detection assays 17 2.9 Structural mapping of protein-protein interactions 18 2.10 Proximity ligation assay 18 2.11 Jurkat reporter cell line assay 19 2.12 Statistical analysis 19 CHAPTER 3 Results 21 3.1 Generation of CAR T cells with secretion of anti-PD‑L1 antibody fragments 21 3.2 Continuous secretion of anti-PD-L1 scFv may compromise CAR T cell expansion under repeated antigen exposure 22 3.3 CAR T cells co-expressing anti-PD‑L1 scFv display features of T cell exhaustion 23 3.4 CAR T cells secreting anti-PD-L1 scFv exhibit enhanced activation-induced apoptosis 23 3.5 Blockade of PD‑L1 on activated CAR T cells induces enhanced apoptosis 24 3.6 Anti-PD-L1 antibody disrupts the PD-L1/CD80 cis-interaction 25 3.7 PD-L1 blockade during CAR T activation results in diminished CD80 expression 26 3.8 CTLA-4 blockade restores CD80 expression and attenuates atezolizumab-induced apoptosis 27 3.9 PD-L1 blockade also reduces CD80 and TCR signaling in non-CAR T cells 28 3.10 Mechanistic summary based on experimental findings 28 CHAPTER 4 Discussion and Conclusion 31 4.1 Complexity of PD‑L1-mediated regulation in the tumor microenvironment 31 4.2 Functional implications of PD-L1/CD80 cis-interactions in CAR T Cells 32 4.3 CTLA-4-mediated depletion of CD80 drives apoptosis after PD-L1 blockade 32 4.4 Considerations of PD-L1 “back-signaling” and antibody specificity 33 4.5 Clinical impact of this study 34 4.6 Future perspectives 34 4.7 Conclusion 35 CHAPTER 5 References 37 Appendix A Tables 53 Appendix B Figures 55

    Aghajanian, H., Kimura, T., Rurik, J. G., Hancock, A. S., Leibowitz, M. S., Li, L., Scholler, J., Monslow, J., Lo, A., Han, W., Wang, T., Bedi, K., Morley, M. P., Linares Saldana, R. A., Bolar, N. A., McDaid, K., Assenmacher, C.-A., Smith, C. L., Wirth, D., … Epstein, J. A. (2019). Targeting cardiac fibrosis with engineered T cells. Nature, 573(7774), 430–433. https://doi.org/10.1038/s41586-019-1546-z

    Albelda, S. M. (2024). CAR T cell therapy for patients with solid tumours: Key lessons to learn and unlearn. Nature Reviews Clinical Oncology, 21(1), 47–66. https://doi.org/10.1038/s41571-023-00832-4

    Alfei, F., Kanev, K., Hofmann, M., Wu, M., Ghoneim, H. E., Roelli, P., Utzschneider, D. T., Von Hoesslin, M., Cullen, J. G., Fan, Y., Eisenberg, V., Wohlleber, D., Steiger, K., Merkler, D., Delorenzi, M., Knolle, P. A., Cohen, C. J., Thimme, R., Youngblood, B., & Zehn, D. (2019). TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. Nature, 571(7764), 265–269. https://doi.org/10.1038/s41586-019-1326-9

    Arcangeli, S., Falcone, L., Camisa, B., De Girardi, F., Biondi, M., Giglio, F., Ciceri, F., Bonini, C., Bondanza, A., & Casucci, M. (2020). Next-Generation Manufacturing Protocols Enriching TSCM CAR T Cells Can Overcome Disease-Specific T Cell Defects in Cancer Patients. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.01217

    Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235

    Binnewies, M., Roberts, E. W., Kersten, K., Chan, V., Fearon, D. F., Merad, M., Coussens, L. M., Gabrilovich, D. I., Ostrand-Rosenberg, S., Hedrick, C. C., Vonderheide, R. H., Pittet, M. J., Jain, R. K., Zou, W., Howcroft, T. K., Woodhouse, E. C., Weinberg, R. A., & Krummel, M. F. (2018). Understanding the tumor immune microenvironment (TIME) for effective therapy. Nature Medicine, 24(5), 541–550. https://doi.org/10.1038/s41591-018-0014-x

    Chen, C., Gu, Y.-M., Zhang, F., Zhang, Z.-C., Zhang, Y.-T., He, Y.-D., Wang, L., Zhou, N., Tang, F.-T., Liu, H.-J., & Li, Y.-M. (2021). Construction of PD1/CD28 chimeric-switch receptor enhances anti-tumor ability of c-Met CAR-T in gastric cancer. OncoImmunology, 10(1), 1901434. https://doi.org/10.1080/2162402X.2021.1901434

    Chen, J., López-Moyado, I. F., Seo, H., Lio, C.-W. J., Hempleman, L. J., Sekiya, T., Yoshimura, A., Scott-Browne, J. P., & Rao, A. (2019). NR4A transcription factors limit CAR T cell function in solid tumours. Nature, 567(7749), 530–534. https://doi.org/10.1038/s41586-019-0985-x

    Chen, Z., Ji, Z., Ngiow, S. F., Manne, S., Cai, Z., Huang, A. C., Johnson, J., Staupe, R. P., Bengsch, B., Xu, C., Yu, S., Kurachi, M., Herati, R. S., Vella, L. A., Baxter, A. E., Wu, J. E., Khan, O., Beltra, J.-C., Giles, J. R., … Wherry, E. J. (2019). TCF-1-Centered Transcriptional Network Drives an Effector versus Exhausted CD8 T Cell-Fate Decision. Immunity, 51(5), 840-855.e5. https://doi.org/10.1016/j.immuni.2019.09.013

    Cherkassky, L., Morello, A., Villena-Vargas, J., Feng, Y., Dimitrov, D. S., Jones, D. R., Sadelain, M., & Adusumilli, P. S. (2016). Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. Journal of Clinical Investigation, 126(8), 3130–3144. https://doi.org/10.1172/JCI83092

    Chmielewski, M., & Abken, H. (2017). CAR T Cells Releasing IL-18 Convert to T-Bethigh FoxO1low Effectors that Exhibit Augmented Activity against Advanced Solid Tumors. Cell Reports, 21(11), 3205–3219. https://doi.org/10.1016/j.celrep.2017.11.063

    Chmielewski, M., Kopecky, C., Hombach, A. A., & Abken, H. (2011). IL-12 Release by Engineered T Cells Expressing Chimeric Antigen Receptors Can Effectively Muster an Antigen-Independent Macrophage Response on Tumor Cells That Have Shut Down Tumor Antigen Expression. Cancer Research, 71(17), 5697–5706. https://doi.org/10.1158/0008-5472.CAN-11-0103

    Choi, B. D., Yu, X., Castano, A. P., Bouffard, A. A., Schmidts, A., Larson, R. C., Bailey, S. R., Boroughs, A. C., Frigault, M. J., Leick, M. B., Scarfò, I., Cetrulo, C. L., Demehri, S., Nahed, B. V., Cahill, D. P., Wakimoto, H., Curry, W. T., Carter, B. S., & Maus, M. V. (2019). CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nature Biotechnology, 37(9), 1049–1058. https://doi.org/10.1038/s41587-019-0192-1

    Chong, E. A., Alanio, C., Svoboda, J., Nasta, S. D., Landsburg, D. J., Lacey, S. F., Ruella, M., Bhattacharyya, S., Wherry, E. J., & Schuster, S. J. (2022). Pembrolizumab for B-cell lymphomas relapsing after or refractory to CD19-directed CAR T-cell therapy. Blood, 139(7), 1026–1038. https://doi.org/10.1182/blood.2021012634

    Chong, E. A., Melenhorst, J. J., Lacey, S. F., Ambrose, D. E., Gonzalez, V., Levine, B. L., June, C. H., & Schuster, S. J. (2017). PD-1 blockade modulates chimeric antigen receptor (CAR)–modified T cells: Refueling the CAR. Blood, 129(8), 1039–1041. https://doi.org/10.1182/blood-2016-09-738245

    Cieri, N., Camisa, B., Cocchiarella, F., Forcato, M., Oliveira, G., Provasi, E., Bondanza, A., Bordignon, C., Peccatori, J., Ciceri, F., Lupo-Stanghellini, M. T., Mavilio, F., Mondino, A., Bicciato, S., Recchia, A., & Bonini, C. (2013). IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors. Blood, 121(4), 573–584. https://doi.org/10.1182/blood-2012-05-431718

    Collins, A. V., Brodie, D. W., Gilbert, R. J. C., Iaboni, A., Manso-Sancho, R., Walse, B., Stuart, D. I., Van Der Merwe, P. A., & Davis, S. J. (2002). The Interaction Properties of Costimulatory Molecules Revisited. Immunity, 17(2), 201–210. https://doi.org/10.1016/S1074-7613(02)00362-X

    Ding, Y., Chen, C., Ma, S., Sheng, X., Zhao, F., Peng, J., Dong, H., Ma, C., & Li, C. (2022). Intrinsic PD‐L1 promotes antitumor activity of CD8 + cytotoxic T lymphocytes via in cis interaction with CD80. Cancer Communications, 42(8), 784–788. https://doi.org/10.1002/cac2.12337

    Diskin, B., Adam, S., Cassini, M. F., Sanchez, G., Liria, M., Aykut, B., Buttar, C., Li, E., Sundberg, B., Salas, R. D., Chen, R., Wang, J., Kim, M., Farooq, M. S., Nguy, S., Fedele, C., Tang, K. H., Chen, T., Wang, W., … Miller, G. (2020). PD-L1 engagement on T cells promotes self-tolerance and suppression of neighboring macrophages and effector T cells in cancer. Nature Immunology, 21(4), 442–454. https://doi.org/10.1038/s41590-020-0620-x

    Dreyzin, A., Cai, Y., Han, K. L., Prochazkova, M., Webb, J., Toner, K., Bushnell, K., Yates, B., Jin, P., Stroncek, D. F., & Shah, N. N. (2024). Early Leukapheresis in Patients with B-ALL Yields an Activated, Early Memory T-Cell Phenotype Associated with Response to CAR T-Cell Therapy. Blood, 144, 4853. https://doi.org/10.1182/blood-2024-199264

    Du, L., Nai, Y., Shen, M., Li, T., Huang, J., Han, X., Wang, W., Pang, D., & Jin, A. (2021). IL-21 Optimizes the CAR-T Cell Preparation Through Improving Lentivirus Mediated Transfection Efficiency of T Cells and Enhancing CAR-T Cell Cytotoxic Activities. Frontiers in Molecular Biosciences, 8, 500. https://doi.org/10.3389/fmolb.2021.675179

    Ehrenmann, F., Kaas, Q., & Lefranc, M.-P. (2010). IMGT/3Dstructure-DB and IMGT/DomainGapAlign: A database and a tool for immunoglobulins or antibodies, T cell receptors, MHC, IgSF and MhcSF. Nucleic Acids Research, 38(suppl_1), D301–D307. https://doi.org/10.1093/nar/gkp946

    Eshhar, Z., Waks, T., Gross, G., & Schindler, D. G. (1993). Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proceedings of the National Academy of Sciences, 90(2), 720–724. https://doi.org/10.1073/pnas.90.2.720

    Fanelli, G., Romano, M., Nova-Lamperti, E., Werner Sunderland, M., Nerviani, A., Scottà, C., Bombardieri, M., Quezada, S. A., Sacks, S. H., Noelle, R. J., Pitzalis, C., Lechler, R. I., Lombardi, G., & Becker, P. D. (2021). PD-L1 signaling on human memory CD4+ T cells induces a regulatory phenotype. PLOS Biology, 19(4), e3001199. https://doi.org/10.1371/journal.pbio.3001199

    Finney, H. M., Akbar, A. N., & Lawson, A. D. G. (2004). Activation of Resting Human Primary T Cells with Chimeric Receptors: Costimulation from CD28, Inducible Costimulator, CD134, and CD137 in Series with Signals from the TCRζ Chain. The Journal of Immunology, 172(1), 104–113. https://doi.org/10.4049/jimmunol.172.1.104

    Fraietta, J. A., Lacey, S. F., Orlando, E. J., Pruteanu-Malinici, I., Gohil, M., Lundh, S., Boesteanu, A. C., Wang, Y., O’Connor, R. S., Hwang, W.-T., Pequignot, E., Ambrose, D. E., Zhang, C., Wilcox, N., Bedoya, F., Dorfmeier, C., Chen, F., Tian, L., Parakandi, H., … Melenhorst, J. J. (2018). Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nature Medicine, 24(5), 563–571. https://doi.org/10.1038/s41591-018-0010-1

    Gao, M., Nakajima An, D., Parks, J. M., & Skolnick, J. (2022). AF2Complex predicts direct physical interactions in multimeric proteins with deep learning. Nature Communications, 13(1), 1744. https://doi.org/10.1038/s41467-022-29394-2

    Gardner, R., Wu, D., Cherian, S., Fang, M., Hanafi, L.-A., Finney, O., Smithers, H., Jensen, M. C., Riddell, S. R., Maloney, D. G., & Turtle, C. J. (2016). Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood, 127(20), 2406–2410. https://doi.org/10.1182/blood-2015-08-665547

    Ghassemi, S., Durgin, J. S., Nunez-Cruz, S., Patel, J., Leferovich, J., Pinzone, M., Shen, F., Cummins, K. D., Plesa, G., Cantu, V. A., Reddy, S., Bushman, F. D., Gill, S. I., O’Doherty, U., O’Connor, R. S., & Milone, M. C. (2022). Rapid manufacturing of non-activated potent CAR T cells. Nature Biomedical Engineering, 6(2), 118–128. https://doi.org/10.1038/s41551-021-00842-6

    Golumba-Nagy, V., Kuehle, J., Hombach, A. A., & Abken, H. (2018). CD28-ζ CAR T Cells Resist TGF-β Repression through IL-2 Signaling, Which Can Be Mimicked by an Engineered IL-7 Autocrine Loop. Molecular Therapy, 26(9), 2218–2230. https://doi.org/10.1016/j.ymthe.2018.07.005

    Good, C. R., Aznar, M. A., Kuramitsu, S., Samareh, P., Agarwal, S., Donahue, G., Ishiyama, K., Wellhausen, N., Rennels, A. K., Ma, Y., Tian, L., Guedan, S., Alexander, K. A., Zhang, Z., Rommel, P. C., Singh, N., Glastad, K. M., Richardson, M. W., Watanabe, K., … June, C. H. (2021). An NK-like CAR T cell transition in CAR T cell dysfunction. Cell, 184(25), 6081-6100.e26. https://doi.org/10.1016/j.cell.2021.11.016

    Hammill, D. (2021). CytoExploreR: Interactive Analysis of Cytometry Data. R package version 1.1.0. [Computer software]. https://github.com/DillonHammill/CytoExploreR

    Hill, B. T., Roberts, Z. J., Xue, A., Rossi, J. M., & Smith, M. R. (2020). Rapid tumor regression from PD-1 inhibition after anti-CD19 chimeric antigen receptor T-cell therapy in refractory diffuse large B-cell lymphoma. Bone Marrow Transplantation, 55(6), 1184–1187. https://doi.org/10.1038/s41409-019-0657-3

    Hirayama, A. V., Kimble, E. L., Wright, J. H., Fiorenza, S., Gauthier, J., Voutsinas, J. M., Wu, Q., Yeung, C. C. S., Gazeau, N., Pender, B. S., Kirchmeier, D. R., Torkelson, A., Chutnik, A. N., Cassaday, R. D., Chapuis, A. G., Green, D. J., Kiem, H.-P., Milano, F., Shadman, M., … Turtle, C. J. (2024). Timing of anti–PD-L1 antibody initiation affects efficacy/toxicity of CD19 CAR T-cell therapy for large B-cell lymphoma. Blood Advances, 8(2), 453–467. https://doi.org/10.1182/bloodadvances.2023011287

    Hou, A. J., Chen, L. C., & Chen, Y. Y. (2021). Navigating CAR-T cells through the solid-tumour microenvironment. Nature Reviews Drug Discovery, 20(7), 531–550. https://doi.org/10.1038/s41573-021-00189-2

    IMGT/3Dstructure-DB card. (n.d.). Retrieved February 6, 2024, from https://www.imgt.org/3Dstructure-DB/cgi/details.cgi?pdbcode=9814&Part=Chain

    Jacobson, C. A., Locke, F. L., Miklos, D. B., Herrera, A. F., Westin, J. R., Lee, J., Rossi, J. M., Zheng, L., Avanzi, M. P., Roberts, Z. J., & Sun, J. (2018). End of Phase 1 Results from Zuma-6: Axicabtagene Ciloleucel (Axi-Cel) in Combination with Atezolizumab for the Treatment of Patients with Refractory Diffuse Large B Cell Lymphoma. Blood, 132(Supplement 1), 4192. https://doi.org/10.1182/blood-2018-99-111523

    Jacoby, E., Nguyen, S. M., Fountaine, T. J., Welp, K., Gryder, B., Qin, H., Yang, Y., Chien, C. D., Seif, A. E., Lei, H., Song, Y. K., Khan, J., Lee, D. W., Mackall, C. L., Gardner, R. A., Jensen, M. C., Shern, J. F., & Fry, T. J. (2016). CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity. Nature Communications, 7(1), 12320. https://doi.org/10.1038/ncomms12320

    Jain, M. D., Zhao, H., Wang, X., Atkins, R., Menges, M., Reid, K., Spitler, K., Faramand, R., Bachmeier, C., Dean, E. A., Cao, B., Chavez, J. C., Shah, B., Lazaryan, A., Nishihori, T., Hussaini, M., Gonzalez, R. J., Mullinax, J. E., Rodriguez, P. C., … Locke, F. L. (2021). Tumor interferon signaling and suppressive myeloid cells are associated with CAR T-cell failure in large B-cell lymphoma. Blood, 137(19), 2621–2633. https://doi.org/10.1182/blood.2020007445

    June, C. H., & Sadelain, M. (2018). Chimeric Antigen Receptor Therapy. New England Journal of Medicine, 379(1), 64–73. https://doi.org/10.1056/NEJMra1706169

    Jutz, S., Leitner, J., Schmetterer, K., Doel-Perez, I., Majdic, O., Grabmeier-Pfistershammer, K., Paster, W., Huppa, J. B., & Steinberger, P. (2016). Assessment of costimulation and coinhibition in a triple parameter T cell reporter line: Simultaneous measurement of NF-κB, NFAT and AP-1. Journal of Immunological Methods, 430, 10–20. https://doi.org/10.1016/j.jim.2016.01.007

    Kaas, Q., Ruiz, M., & Lefranc, M. (2004). IMGT/3Dstructure‐DB and IMGT/StructuralQuery, a database and a tool for immunoglobulin, T cell receptor and MHC structural data. Nucleic Acids Research, 32(suppl_1), D208–D210. https://doi.org/10.1093/nar/gkh042

    Kakarla, S., Chow, K. K., Mata, M., Shaffer, D. R., Song, X.-T., Wu, M.-F., Liu, H., Wang, L. L., Rowley, D. R., Pfizenmaier, K., & Gottschalk, S. (2013). Antitumor Effects of Chimeric Receptor Engineered Human T Cells Directed to Tumor Stroma. Molecular Therapy, 21(8), 1611–1620. https://doi.org/10.1038/mt.2013.110

    Kalinin, R. S., Ukrainskaya, V. M., Chumakov, S. P., Moysenovich, A. M., Tereshchuk, V. M., Volkov, D. V., Pershin, D. S., Maksimov, E. G., Zhang, H., Maschan, M. A., Rubtsov, Y. P., & Stepanov, A. V. (2021). Engineered Removal of PD-1 From the Surface of CD19 CAR-T Cells Results in Increased Activation and Diminished Survival. Frontiers in Molecular Biosciences, 8, 745286. https://doi.org/10.3389/fmolb.2021.745286

    Kantheti, U., Forward, T. S., Lucas, E. D., Schafer, J. B., Tamburini, P. J., Burchill, M. A., & Tamburini, B. A. J. (2025). PD-L1-CD80 interactions are required for intracellular signaling necessary for dendritic cell migration. Science Advances, 11(5), eadt3044. https://doi.org/10.1126/sciadv.adt3044

    Kiyasu, J., Miyoshi, H., Hirata, A., Arakawa, F., Ichikawa, A., Niino, D., Sugita, Y., Yufu, Y., Choi, I., Abe, Y., Uike, N., Nagafuji, K., Okamura, T., Akashi, K., Takayanagi, R., Shiratsuchi, M., & Ohshima, K. (2015). Expression of programmed cell death ligand 1 is associated with poor overall survival in patients with diffuse large B-cell lymphoma. Blood, 126(19), 2193–2201. https://doi.org/10.1182/blood-2015-02-629600

    Kong, Y., Tang, L., You, Y., Li, Q., & Zhu, X. (2023). Analysis of causes for poor persistence of CAR-T cell therapy in vivo. Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1063454

    Kornepati, A. V. R., Vadlamudi, R. K., & Curiel, T. J. (2022). Programmed death ligand 1 signals in cancer cells. Nature Reviews Cancer, 22(3), 174–189. https://doi.org/10.1038/s41568-021-00431-4

    Lee, D., Cho, M., Kim, E., Seo, Y., & Cha, J.-H. (2024). PD-L1: From cancer immunotherapy to therapeutic implications in multiple disorders. Molecular Therapy, 32(12), 4235–4255. https://doi.org/10.1016/j.ymthe.2024.09.026

    Lee, D. W., Kochenderfer, J. N., Stetler-Stevenson, M., Cui, Y. K., Delbrook, C., Feldman, S. A., Fry, T. J., Orentas, R., Sabatino, M., Shah, N. N., Steinberg, S. M., Stroncek, D., Tschernia, N., Yuan, C., Zhang, H., Zhang, L., Rosenberg, S. A., Wayne, A. S., & Mackall, C. L. (2015). T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: A phase 1 dose-escalation trial. The Lancet, 385(9967), 517–528. https://doi.org/10.1016/S0140-6736(14)61403-3

    Lee, H. T., Lee, J. Y., Lim, H., Lee, S. H., Moon, Y. J., Pyo, H. J., Ryu, S. E., Shin, W., & Heo, Y.-S. (2017). Molecular mechanism of PD-1/PD-L1 blockade via anti-PD-L1 antibodies atezolizumab and durvalumab. Scientific Reports, 7(1), 5532. https://doi.org/10.1038/s41598-017-06002-8

    Liu, K., Tan, S., Chai, Y., Chen, D., Song, H., Zhang, C. W.-H., Shi, Y., Liu, J., Tan, W., Lyu, J., Gao, S., Yan, J., Qi, J., & Gao, G. F. (2017). Structural basis of anti-PD-L1 monoclonal antibody avelumab for tumor therapy. Cell Research, 27(1), 151–153. https://doi.org/10.1038/cr.2016.102

    Loeffler, M., Krüger, J. A., Niethammer, A. G., & Reisfeld, R. A. (2006). Targeting tumor-associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake. The Journal of Clinical Investigation, 116(7), 1955–1962. https://doi.org/10.1172/JCI26532

    Ma, Q., He, X., Zhang, B., Guo, F., Ou, X., Yang, Q., Shu, P., Chen, Y., Li, K., Gao, G., Zhu, Y., Qin, D., Tang, J., Li, X., Jing, M., Zhao, J., Mo, Z., Liu, N., Zeng, Y., … Wang, Y. (2022). A PD-L1-targeting chimeric switch receptor enhances efficacy of CAR-T cell for pleural and peritoneal metastasis. Signal Transduction and Targeted Therapy, 7(1), 380. https://doi.org/10.1038/s41392-022-01198-2

    Maher, J., Brentjens, R. J., Gunset, G., Rivière, I., & Sadelain, M. (2002). Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRζ /CD28 receptor. Nature Biotechnology, 20(1), 70–75. https://doi.org/10.1038/nbt0102-70

    Markley, J. C., & Sadelain, M. (2010). IL-7 and IL-21 are superior to IL-2 and IL-15 in promoting human T cell–mediated rejection of systemic lymphoma in immunodeficient mice. Blood, 115(17), 3508–3519. https://doi.org/10.1182/blood-2009-09-241398

    Marofi, F., Motavalli, R., Safonov, V. A., Thangavelu, L., Yumashev, A. V., Alexander, M., Shomali, N., Chartrand, M. S., Pathak, Y., Jarahian, M., Izadi, S., Hassanzadeh, A., Shirafkan, N., Tahmasebi, S., & Khiavi, F. M. (2021). CAR T cells in solid tumors: Challenges and opportunities. Stem Cell Research & Therapy, 12(1), 81. https://doi.org/10.1186/s13287-020-02128-1

    Marton, C., Mercier-Letondal, P., Galaine, J., & Godet, Y. (2021). An unmet need: Harmonization of IL-7 and IL-15 combination for the ex vivo generation of minimally differentiated T cells. Cellular Immunology, 363, 104314. https://doi.org/10.1016/j.cellimm.2021.104314

    Maude, S. L., Frey, N., Shaw, P. A., Aplenc, R., Barrett, D. M., Bunin, N. J., Chew, A., Gonzalez, V. E., Zheng, Z., Lacey, S. F., Mahnke, Y. D., Melenhorst, J. J., Rheingold, S. R., Shen, A., Teachey, D. T., Levine, B. L., June, C. H., Porter, D. L., & Grupp, S. A. (2014). Chimeric Antigen Receptor T Cells for Sustained Remissions in Leukemia. New England Journal of Medicine, 371(16), 1507–1517. https://doi.org/10.1056/NEJMoa1407222

    Maude, S. L., Laetsch, T. W., Buechner, J., Rives, S., Boyer, M., Bittencourt, H., Bader, P., Verneris, M. R., Stefanski, H. E., Myers, G. D., Qayed, M., De Moerloose, B., Hiramatsu, H., Schlis, K., Davis, K. L., Martin, P. L., Nemecek, E. R., Yanik, G. A., Peters, C., … Grupp, S. A. (2018). Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. New England Journal of Medicine, 378(5), 439–448. https://doi.org/10.1056/NEJMoa1709866

    Melenhorst, J. J., Chen, G. M., Wang, M., Porter, D. L., Chen, C., Collins, M. A., Gao, P., Bandyopadhyay, S., Sun, H., Zhao, Z., Lundh, S., Pruteanu-Malinici, I., Nobles, C. L., Maji, S., Frey, N. V., Gill, S. I., Loren, A. W., Tian, L., Kulikovskaya, I., … June, C. H. (2022). Decade-long leukaemia remissions with persistence of CD4+ CAR T cells. Nature, 602(7897), 503–509. https://doi.org/10.1038/s41586-021-04390-6

    Meng, E. C., Goddard, T. D., Pettersen, E. F., Couch, G. S., Pearson, Z. J., Morris, J. H., & Ferrin, T. E. (2023). UCSF ChimeraX: Tools for structure building and analysis. Protein Science, 32(11), e4792. https://doi.org/10.1002/pro.4792

    Neelapu, S. S., Locke, F. L., Bartlett, N. L., Lekakis, L. J., Miklos, D. B., Jacobsen, E. D., Braunschweig, I., Oluwole, O. O., Siddiqi, T., Lin, Y., Timmerman, J. M., Reagan, P. M., Bot, A., Rossi, J. M., Navale, L., Jiang, Y., Aycock, J. S., Elias, M., Wiezorek, J. S., & Go, W. Y. (2017). Long-Term Follow-up ZUMA-1: A Pivotal Trial of Axicabtagene Ciloleucel (Axi-Cel; KTE-C19) in Patients with Refractory Aggressive Non-Hodgkin Lymphoma (NHL). Blood, 130(Supplement 1), 578. https://doi.org/10.1182/blood.V130.Suppl_1.578.578

    Oh, S. A., Wu, D.-C., Cheung, J., Navarro, A., Xiong, H., Cubas, R., Totpal, K., Chiu, H., Wu, Y., Comps-Agrar, L., Leader, A. M., Merad, M., Roose-Germa, M., Warming, S., Yan, M., Kim, J. M., Rutz, S., & Mellman, I. (2020). PD-L1 expression by dendritic cells is a key regulator of T-cell immunity in cancer. Nature Cancer, 1(7), 681–691. https://doi.org/10.1038/s43018-020-0075-x

    Park, J. H., Rivière, I., Gonen, M., Wang, X., Sénéchal, B., Curran, K. J., Sauter, C., Wang, Y., Santomasso, B., Mead, E., Roshal, M., Maslak, P., Davila, M., Brentjens, R. J., & Sadelain, M. (2018). Long-Term Follow-up of CD19 CAR Therapy in Acute Lymphoblastic Leukemia. New England Journal of Medicine, 378(5), 449–459. https://doi.org/10.1056/NEJMoa1709919

    Patel, U., Abernathy, J., Savani, B. N., Oluwole, O., Sengsayadeth, S., & Dholaria, B. (2022). CAR T cell therapy in solid tumors: A review of current clinical trials. eJHaem, 3(S1), 24–31. https://doi.org/10.1002/jha2.356

    Poorebrahim, M., Melief, J., Pico de Coaña, Y., L. Wickström, S., Cid-Arregui, A., & Kiessling, R. (2021). Counteracting CAR T cell dysfunction. Oncogene, 40(2), 421–435. https://doi.org/10.1038/s41388-020-01501-x

    Rafiq, S., Yeku, O. O., Jackson, H. J., Purdon, T. J., van Leeuwen, D. G., Drakes, D. J., Song, M., Miele, M. M., Li, Z., Wang, P., Yan, S., Xiang, J., Ma, X., Seshan, V. E., Hendrickson, R. C., Liu, C., & Brentjens, R. J. (2018). Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo. Nature Biotechnology, 36(9), 847–856. https://doi.org/10.1038/nbt.4195

    Rodriguez-Garcia, A., Lynn, R. C., Poussin, M., Eiva, M. A., Shaw, L. C., O’Connor, R. S., Minutolo, N. G., Casado-Medrano, V., Lopez, G., Matsuyama, T., & Powell, D. J. (2021). CAR-T cell-mediated depletion of immunosuppressive tumor-associated macrophages promotes endogenous antitumor immunity and augments adoptive immunotherapy. Nature Communications, 12(1), 877. https://doi.org/10.1038/s41467-021-20893-2

    Schuster, S. J., Tam, C. S., Borchmann, P., Worel, N., McGuirk, J. P., Holte, H., Waller, E. K., Jaglowski, S., Bishop, M. R., Damon, L. E., Foley, S. R., Westin, J. R., Fleury, I., Ho, P. J., Mielke, S., Teshima, T., Janakiram, M., Hsu, J.-M., Izutsu, K., … Maziarz, R. T. (2021). Long-term clinical outcomes of tisagenlecleucel in patients with relapsed or refractory aggressive B-cell lymphomas (JULIET): A multicentre, open-label, single-arm, phase 2 study. The Lancet Oncology, 22(10), 1403–1415. https://doi.org/10.1016/S1470-2045(21)00375-2

    Seo, H., Chen, J., González-Avalos, E., Samaniego-Castruita, D., Das, A., Wang, Y. H., López-Moyado, I. F., Georges, R. O., Zhang, W., Onodera, A., Wu, C.-J., Lu, L.-F., Hogan, P. G., Bhandoola, A., & Rao, A. (2019). TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8+ T cell exhaustion. Proceedings of the National Academy of Sciences, 116(25), 12410–12415. https://doi.org/10.1073/pnas.1905675116

    Sharpe, A. H., & Pauken, K. E. (2018). The diverse functions of the PD1 inhibitory pathway. Nature Reviews Immunology, 18(3), 153–167. https://doi.org/10.1038/nri.2017.108

    Sotillo, E., Barrett, D. M., Black, K. L., Bagashev, A., Oldridge, D., Wu, G., Sussman, R., Lanauze, C., Ruella, M., Gazzara, M. R., Martinez, N. M., Harrington, C. T., Chung, E. Y., Perazzelli, J., Hofmann, T. J., Maude, S. L., Raman, P., Barrera, A., Gill, S., … Thomas-Tikhonenko, A. (2015). Convergence of Acquired Mutations and Alternative Splicing of CD19 Enables Resistance to CART-19 Immunotherapy. Cancer Discovery, 5(12), 1282–1295. https://doi.org/10.1158/2159-8290.CD-15-1020

    Sugiura, D., Maruhashi, T., Okazaki, I., Shimizu, K., Maeda, T. K., Takemoto, T., & Okazaki, T. (2019). Restriction of PD-1 function by cis-PD-L1/CD80 interactions is required for optimal T cell responses. Science, 364(6440), 558–566. https://doi.org/10.1126/science.aav7062

    Svoboda, J., Landsburg, D. J., Gerson, J., Nasta, S. D., Barta, S. K., Chong, E. A., Cook, M., Frey, N. V., Shea, J., Cervini, A., Marshall, A., Four, M., Davis, M. M., Jadlowsky, J. K., Chew, A., Pequignot, E., Gonzalez, V., Noll, J. H., Paruzzo, L., … June, C. H. (2025). Enhanced CAR T-Cell Therapy for Lymphoma after Previous Failure. New England Journal of Medicine, 392(18), 1824–1835. https://doi.org/10.1056/NEJMoa2408771

    Taube, J. M., Anders, R. A., Young, G. D., Xu, H., Sharma, R., McMiller, T. L., Chen, S., Klein, A. P., Pardoll, D. M., Topalian, S. L., & Chen, L. (2012). Colocalization of Inflammatory Response with B7-H1 Expression in Human Melanocytic Lesions Supports an Adaptive Resistance Mechanism of Immune Escape. Science Translational Medicine, 4(127), 127ra37-127ra37. https://doi.org/10.1126/scitranslmed.3003689

    Theunissen, P., Mejstrikova, E., Sedek, L., Van Der Sluijs-Gelling, A. J., Gaipa, G., Bartels, M., Sobral Da Costa, E., Kotrová, M., Novakova, M., Sonneveld, E., Buracchi, C., Bonaccorso, P., Oliveira, E., Te Marvelde, J. G., Szczepanski, T., Lhermitte, L., Hrusak, O., Lecrevisse, Q., Grigore, G. E., … Van Der Velden, V. H. J. (2017). Standardized flow cytometry for highly sensitive MRD measurements in B-cell acute lymphoblastic leukemia. Blood, 129(3), 347–357. https://doi.org/10.1182/blood-2016-07-726307

    van der Merwe, P. A., Bodian, D. L., Daenke, S., Linsley, P., & Davis, S. J. (1997). CD80 (B7-1) Binds Both CD28 and CTLA-4 with a Low Affinity and Very Fast Kinetics. The Journal of Experimental Medicine, 185(3), 393–404. https://doi.org/10.1084/jem.185.3.393

    Wang, Y., Tong, C., Dai, H., Wu, Z., Han, X., Guo, Y., Chen, D., Wei, J., Ti, D., Liu, Z., Mei, Q., Li, X., Dong, L., Nie, J., Zhang, Y., & Han, W. (2021). Low-dose decitabine priming endows CAR T cells with enhanced and persistent antitumour potential via epigenetic reprogramming. Nature Communications, 12(1), 409. https://doi.org/10.1038/s41467-020-20696-x

    Wang, Z., Li, N., Feng, K., Chen, M., Zhang, Y., Liu, Y., Yang, Q., Nie, J., Tang, N., Zhang, X., Cheng, C., Shen, L., He, J., Ye, X., Cao, W., Wang, H., & Han, W. (2021). Phase I study of CAR-T cells with PD-1 and TCR disruption in mesothelin-positive solid tumors. Cellular & Molecular Immunology, 18(9), 2188–2198. https://doi.org/10.1038/s41423-021-00749-x

    Wei, J., Luo, C., Wang, Y., Guo, Y., Dai, H., Tong, C., Ti, D., Wu, Z., & Han, W. (2019). PD-1 silencing impairs the anti-tumor function of chimeric antigen receptor modified T cells by inhibiting proliferation activity. Journal for ImmunoTherapy of Cancer, 7(1), 209. https://doi.org/10.1186/s40425-019-0685-y

    Wherry, E. J., & Kurachi, M. (2015). Molecular and cellular insights into T cell exhaustion. Nature Reviews Immunology, 15(8), 486–499. https://doi.org/10.1038/nri3862

    Xu, X., Dennett, P., Zhang, J., Sherrard, A., Zhao, Y., Masubuchi, T., Bui, J. D., Chen, X., & Hui, E. (2023). CTLA4 depletes T cell endogenous and trogocytosed B7 ligands via cis-endocytosis. Journal of Experimental Medicine, 220(7), e20221391. https://doi.org/10.1084/jem.20221391

    Xu, Y., Zhang, M., Ramos, C. A., Durett, A., Liu, E., Dakhova, O., Liu, H., Creighton, C. J., Gee, A. P., Heslop, H. E., Rooney, C. M., Savoldo, B., & Dotti, G. (2014). Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. Blood, 123(24), 3750–3759. https://doi.org/10.1182/blood-2014-01-552174

    Zak, K. M., Kitel, R., Przetocka, S., Golik, P., Guzik, K., Musielak, B., Dömling, A., Dubin, G., & Holak, T. A. (2015). Structure of the Complex of Human Programmed Death 1, PD-1, and Its Ligand PD-L1. Structure, 23(12), 2341–2348. https://doi.org/10.1016/j.str.2015.09.010

    Zanello, A., Bortolotti, M., Maiello, S., Bolognesi, A., & Polito, L. (2022). Anti-PD-L1 immunoconjugates for cancer therapy: Are available antibodies good carriers for toxic payload delivering? Frontiers in Pharmacology, 13. https://doi.org/10.3389/fphar.2022.972046

    Zhao, Y., Caron, C., Chan, Y.-Y., Lee, C. K., Xu, X., Zhang, J., Masubuchi, T., Wu, C., Bui, J. D., & Hui, E. (2023). Cis-B7:CD28 interactions at invaginated synaptic membranes provide CD28 co-stimulation and promote CD8+ T cell function and anti-tumor immunity. Immunity, 56(6), 1187-1203.e12. https://doi.org/10.1016/j.immuni.2023.04.005

    Zhao, Y., Lee, C. K., Lin, C.-H., Gassen, R. B., Xu, X., Huang, Z., Xiao, C., Bonorino, C., Lu, L.-F., Bui, J. D., & Hui, E. (2019). PD-L1:CD80 Cis-Heterodimer Triggers the Co-stimulatory Receptor CD28 While Repressing the Inhibitory PD-1 and CTLA-4 Pathways. Immunity, 51(6), 1059-1073.e9. https://doi.org/10.1016/j.immuni.2019.11.003

    無法下載圖示 校內:2027-08-01公開
    校外:2027-08-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE