| 研究生: |
李瑞恩 Lee, Jui-En |
|---|---|
| 論文名稱: |
自由車選手風洞與路騎實驗數據系統分析 Cycling data analysis: Research merging wind tunnel and road test results |
| 指導教授: |
苗君易
Miau, Jiun-Jih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 自由車 、風洞 、路騎 、基因演算法 、功率 、風速計 |
| 外文關鍵詞: | cyclist, wind tunnel, road test, genetic algorithm, power, anemometer |
| 相關次數: | 點閱:175 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在現代自由車賽事中,騎行效率的提升是受到廣泛關注的議題。選手和團隊投入大量的時間和資源進行訓練和研究,以尋求最佳的設計和策略,從而在賽事中獲得優勢。近年來已更多專業車手使用各種科學儀器數據做為參考依據。而在近期,功率計的發展也發生改變,市面上不再只有透過直接量測騎行者踩踏力量的功率計,同時也出現新型態間接測量的功率計。本研究主旨在透過自由車選手風洞與路騎實驗,探討利用數據分析方法獲得在自由車騎行中阻力係數CD,提供訓練策略和研究方向的指標,以及一種主要透過以風速計測量來推估實際功率方法的可行性。
研究方法包含一次風洞實驗與三次路騎實驗,風洞實驗旨在測試選手和車衣在不同風速下所面臨的風阻,提供確切可控環境因素,佐證理論。而路騎實驗顯示出實際應用環節,相較於風洞實驗,其涵蓋更多不可控之變因。本研究路騎實驗透過功率計、風速計等實驗儀器,計算功率估計公式,藉此分析選手和車衣在不同情況下之阻力,驗證風洞實驗結果。同時,在建立數據資料庫後,藉由基因演算法優化功率估計公式,探討實際應用。
於風洞實驗中,發現不同高寬比選手穿著相同車衣以相同姿勢測試時,皆發生阻力隨高寬比上升而上升的趨勢。並且在風洞與路騎比對中發現,路騎實驗結果顯示所有高寬比選手皆在身穿相同車衣時擁有相對較高的阻力值,差異值為0 ~ 4%,與風洞結果相似,由此可證該車衣擁有較好的減阻效果。接著於路騎期間透過基因演算法進行大數據運算出阻力面積與風速關係,再由估計功率公式反推之估計功率,雖說結果仍有延遲與速度項依賴性等問題,但與參考功率計之觀測資料差異值僅0%~10%,且與商用功率計有極高相同趨勢等優勢,顯示出估計功率數據的價值。預期通過初期功率計、風速計架設,並經過蒐集大數據的過程,便可以知道選手之阻力資訊,往後甚至可以移除功率計,減輕重量的同時亦不失功率資訊,大幅提升功率系統便利性。
透過風洞與路騎實驗研究中將可以觀察到實際環境因素對自由車騎行結果之影響,並從中整理數據之間的關聯性。隨著數據資料庫的完善,勢必能夠更加進一步了解其中奧妙。
The improvement of cycling efficiency in modern cycling events is an issue of great concern. In this study, we investigated the feasibility of utilizing data analysis methods to obtain the drag coefficient in cycling and a method to estimate the actual power mainly by anemometer measurements through wind tunnel and road test experiments of cyclists. The wind tunnel experiments were designed to provide precise and controllable environmental factors to support the theory, while the road cycling experiments were conducted to calculate the power estimation equations by using anemometer and other experimental equipment to analyze the drag of the cyclist and the jersey under different conditions. At the same time, after the establishment of the database, genetic algorithms were used to optimize the power estimation formula and explore the practical applications.
Through the wind tunnel and road cycling experiments, it will be able to observe the influence of actual environmental factors on the results of cycling and organize the correlation between the data.
[1] T. N. Crouch, D. Burton, Z. A. LaBry, and K. B. Blair, "Riding against the wind: a review of competition cycling aerodynamics," Sports Engineering, vol. 20, pp. 81-110, 2017.
[2] H. Allen, A. R. Coggan, and S. McGregor, Training and racing with a power meter. VeloPress, 2019.
[3] 張斯閔, "自行車功率計的演進," 運動科學, 2021.
[4] L. Prandtl, "On fluid motions with very small friction," Verhldg, vol. 3, pp. 484-491, 1904.
[5] L. Prandtl, "Motion of fluids with very little viscosity," 1928.
[6] E. Achenbach, "Distribution of local pressure and skin friction around a circular cylinder in cross-flow up to Re= 5× 106," Journal of fluid Mechanics, vol. 34, no. 4, pp. 625-639, 1968.
[7] J. C. Martin, C. J. Davidson, and E. R. Pardyjak, "Understanding sprint-cycling performance: the integration of muscle power, resistance, and modeling," International journal of sports physiology and performance, vol. 2, no. 1, pp. 5-21, 2007.
[8] J. Shanebrook and R. Jaszczak, "Aerodynamics of the human body," in Biomechanics IV: Springer, 1974, pp. 567-571.
[9] H. Chowdhury, F. Alam, and A. Subic, "Aerodynamic performance evaluation of sports textile," Procedia Engineering, vol. 2, no. 2, pp. 2517-2522, 2010.
[10] C. Wieselsberger, "New data on the laws of fluid resistance," 1922.
[11] R. Basu, "Aerodynamic forces on structures of circular cross-section. Part 1. Model-scale data obtained under two-dimensional conditions in low-turbulence streams," Journal of Wind Engineering and Industrial Aerodynamics, vol. 21, no. 3, pp. 273-294, 1985.
[12] E. Achenbach, "Influence of surface roughness on the cross-flow around a circular cylinder," Journal of fluid mechanics, vol. 46, no. 2, pp. 321-335, 1971.
[13] L. Brownlie et al., "Streamlining the time trial apparel of cyclists: the Nike Swift Spin project," Sports technology, vol. 2, no. 1-2, pp. 53-60, 2009.
[14] T. Nonweiler, "The air resistance of racing cyclists," Citeseer, 1956.
[15] P. E. di Prampero, G. Cortili, P. Mognoni, and F. Saibene, "Equation of motion of a cyclist," Journal of Applied Physiology, vol. 47, no. 1, pp. 201-206, 1979.
[16] C. Davies, "Effect of air resistance on the metabolic cost and performance of cycling," European journal of applied physiology and occupational physiology, vol. 45, pp. 245-254, 1980.
[17] C. Capelli, G. Rosa, F. Butti, G. Ferretti, A. Veicsteinas, and P. E. di Prampero, "Energy cost and efficiency of riding aerodynamic bicycles," European journal of applied physiology and occupational physiology, vol. 67, pp. 144-149, 1993.
[18] I. E. Faria, "Energy expenditure, aerodynamics and medical problems in cycling: an update," Sports Medicine, vol. 14, pp. 43-63, 1992.
[19] C. R. Kyle and E. Burke, "Improving the racing bicycle," Mechanical engineering, vol. 106, no. 9, pp. 34-45, 1984.
[20] F. Grappe, R. Candau, A. Belli, and J. D. Rouillon, "Aerodynamic drag in field cycling with special reference to the Obree's position," Ergonomics, vol. 40, no. 12, pp. 1299-1311, 1997.
[21] T. Defraeye, B. Blocken, E. Koninckx, P. Hespel, and J. Carmeliet, "Aerodynamic study of different cyclist positions: CFD analysis and full-scale wind-tunnel tests," Journal of biomechanics, vol. 43, no. 7, pp. 1262-1268, 2010.
[22] H. Chowdhury, F. Alam, and D. Mainwaring, "A full scale bicycle aerodynamics testing methodology," Procedia Engineering, vol. 13, pp. 94-99, 2011.
[23] F. R. Whitt and D. G. Wilson, Bicycling science (no. Monograph). 1982.
[24] J. C. Martin, D. L. Milliken, J. E. Cobb, K. L. McFadden, and A. R. Coggan, "Validation of a mathematical model for road cycling power," Journal of applied biomechanics, vol. 14, no. 3, pp. 276-291, 1998.
[25] O. Isvan, "Wind speed, wind yaw and the aerodynamic drag acting on a bicycle and rider," Journal of Science and Cycling, vol. 4, no. 1, pp. 42-50, 2015.
[26] J. Lieh, "Determination of cycling speed using a closed-form solution from nonlinear dynamic equations," Human Power eJournal, vol. 10, no. 3, pp. 1-9, 2006.
[27] 曾建勳, "全尺與縮尺自行車手模型流場結構與風洞數據研究," 航空太空工程研究所, 國立成功大學, 2019.
[28] 陳嘉君, "自由車選手風洞實驗數據分析與減阻之研究," 航空太空工程研究所, 國立成功大學, 2020.
[29] 袁薇茜, "不同體態與姿勢的自由車選手風洞實驗數據分析," 航空太空工程研究所, 國立成功大學, 2021.
[30] 陳昱翔, "自由車手周遭流場結構探討與風洞實驗數據分析," 航空太空工程研究所, 國立成功大學, 2022.
[31] Y. H. CHEN, J. J. MIAU, and Y. R. CHEN, "An experimental study on the phenomenon of flow field around the limbs of cyclists," Journal of Fluid Science and Technology, vol. 18, no. 1, pp. JFST0008-JFST0008, 2023.
[32] 高義明, "內政部建研所環境風洞校驗及二維鈍形體空氣動力流場實驗研究," 航空太空工程研究所, 國立成功大學, 2005.
[33] J. J. MIAU et al., "自行車測力裝置," 中華民國 Patent TW202306829A Patent Appl. 110129820, 2021.
[34] 苗君易, 詹劭勳, 陳家祥, and 古德興, "破風取勝-精進自由車選手選訓方法之研究-破風取勝-精進自由車選手選訓方法之研究," 2020.
[35] J. J. MIAU and Y. H. CHEN, "基於三孔皮托管之風速量測方法及其裝置," Patent Appl. I17812TW, 2023.
[36] R. Mcainsh, "Design and Engineering of an Accurate Bicycle Power Meter," 2014.
[37] C. Norberg, "An experimental investigation of the flow around a circular cylinder: influence of aspect ratio," Journal of Fluid Mechanics, vol. 258, pp. 287-316, 1994.
[38] G. E. Torres and T. J. Mueller, "Low aspect ratio aerodynamics at low Reynolds numbers," AIAA journal, vol. 42, no. 5, pp. 865-873, 2004.
[39] S. Gribble, "Cycling power and speed," The Computational Cyclist.
[40] F. Grappe, R. Candau, B. Barbier, M. Hoffman, A. Belli, and J.-D. Rouillon, "Influence of tyre pressure and vertical load on coefficient of rolling resistance and simulated cycling performance," Ergonomics, vol. 42, no. 10, pp. 1361-1371, 1999.
[41] A. Saltelli, S. Tarantola, and F. Campolongo, "Sensitivity analysis as an ingredient of modeling," Statistical science, pp. 377-395, 2000.
[42] K. Pearson, "Notes on the history of correlation," Biometrika, vol. 13, no. 1, pp. 25-45, 1920.
[43] I. B. o. Weights and Measures, Guide to the Expression of Uncertainty in Measurement. DIANE Publishing, 1993.
[44] P. J. Pritchard and J. W. Mitchell, Fox and McDonald's introduction to fluid mechanics. John Wiley & Sons, 2016.
[45] J. H. Holland, "Genetic Algorithms," Scientific American, vol. 267, no. 1, pp. 66-73, 1992.
[46] R. R. Bini, P. A. Hume, and A. Cerviri, "A comparison of cycling SRM crank and strain gauge instrumented pedal measures of peak torque, crank angle at peak torque and power output," Procedia Engineering, vol. 13, pp. 56-61, 2011.
[47] J. Bierman. "Road Bike Tire Test: Schwalbe Pro One (tubetype) Addix 25." Bicycle Rolling Resistance. (accessed 2019).