| 研究生: |
張世穎 Chang, Shih-Ying |
|---|---|
| 論文名稱: |
關刀山砂岩層作為二氧化碳地質封存層之注儲壓力研究 Investigating the Injection Pressure for CO2 Geological Sequestration in Kuantaoshan Sandstone Formation |
| 指導教授: |
李德河
Lee, Der-Her |
| 共同指導教授: |
林宏明
Lin, Hung-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 161 |
| 中文關鍵詞: | 三維破壞準則 、關刀山砂岩 、最大容許注儲壓力 、水力破裂試驗 、中空三軸試驗 、破裂壓力 |
| 外文關鍵詞: | Kuantaoshan sandstone, three-dimensional failure criterion, hollow cylinder triaxial test, hydraulic fracturing test, maximum allowable injection pressure, fracture pressure |
| 相關次數: | 點閱:192 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以永和山氣田為對象,探討該處的關刀山砂岩層作為二氧化碳地質封存之儲存層時CO2的最大容許注儲壓力。因關刀山砂岩層位於永和山氣田地表下約1600公尺深處,試樣取得不易,故以出露於出磺坑背斜兩側之關刀山砂岩露頭岩樣作為試驗材料,對其進行物性試驗和傳統三軸、中空三軸等試驗並以所得之材料參數建構出Mohr-Coulomb、Hoek and Brown與Kim and Lade等三維破壞準則,並比較各破壞準則之適用性,最後再以與本研究實際試驗結果最接近之三維破壞準則配合水力破裂法之試驗結果,概估關刀山砂岩層在現地應力條件下所能承受之二氧化碳注儲壓力與破裂壓力。
試驗結果顯示,經中空三軸試驗所得之材料參數所建構出的三種三維破壞準則中,以Hoek and Brown三維破壞準則最接近本研究的關刀山砂岩的真實強度,並經由注儲壓力會影響現地有效應力之概念得到地層於二氧化碳擠注時之應力路徑,配合Hoek and Brown三維破壞準則與現地應力條件下之應力路徑,可以預估出關刀山砂岩層的最大容許注儲壓力為34.00MPa至37.68MPa。而後參考室內水力破裂法的結果,以水力破裂之應力路徑配合Hoek and Brown三維破壞準則與Mohr-Coulomb三維破壞準則,推估出永和山現地不同深處之關刀山砂岩層所能承受的破裂壓力在38.60MPa至43.75MPa。
This study used the Yuanhoshan gas field as the testing site to determine the maximum allowed storage of CO2 geological sequestration. Brazilian test, uniaxial compression test, triaxial compression test and hollow cylinder triaxial test were perform on Kuantaoshan sandstone samples to establish Mohr-Coulomb, Hoek and Brown, and Kim and Lade failure criterion. These failure criterions were then compared. Finally, the three-dimensional failure criterion was selected, incorporated with the results of hydraulic fracturing test, to estimate the maximum storage of CO2 geological sequestration in current Kuantaoshan sandstone formation.
The result shows that the Hoek and Brown failure criterion can best represent the actual strength of Kuantaoshan sandstone. The estimated maximum allowable storage of the Kuantaoshan sandstone formation ranges from 34.00MPa to 37.68MPa. Also, from the hydraulic fracturing test the estimated fracturing pressure ranges from 38.60MPa to 43.75MPa
1. 中央地質調查所,http://www.moeacgs.gov.tw/main.jsp
2. 台灣中油採探事業部,http://www.cpc.com.tw/big5_BD/tped/home/index.asp
3. 王建力、林政億、陳志豪,「以破壞力學分析水力破裂法之研究」,鑛冶,第56卷,第3期,頁123-133,2006
4. 行政院環保署,推動碳捕集及封存技術資訊網,http://ccs.gov2.tw/
5. 朱少華,「二氧化碳地質封存未來發展與中油公司可能扮演之角色」,鑛冶,第五十三卷,第四期,頁7-13,2004
6. 李德河、吳建宏、廖正傑、張育齊、王國榮,「利用中空三軸試驗建立魚藤坪砂岩之降伏曲面」,台灣岩盤工程研討會,2012
7. 吳明賢、胡錦城、王乾盈、張國雄,「應用氣油比的分佈探討鐵砧山構造及錦水-永和山構造油氣移棲之方向」,鑛冶,第52卷,第2期,頁143-150,2007
8. 吳逸民、張建興,「苗栗台中都會區地震災害潛勢分析-子計畫:苗栗台中都會區地震震源潛式分析(II)」,行政院國家科學委員會專題研究計畫成果報告,21頁,2007
9. 呂明達、宣大衡、黃雲津、范振暉,「台灣陸上二氧化碳地質封存潛能推估」,鑛冶,第五十二卷,第三期,頁154-161,2008
10. 何信昌,「五萬分之一台灣地質圖及說明書-圖幅第12號-苗栗」,經濟部中央地質調查所,2004
11. 汪蘭君,「鐵砧山現地應力場與斷層再活動分析」,國立中央大學應用地質研究所碩士論文,2010
12. 李澤民,「CO2再利用:生產生質能」簡報,2013
13. 林國安、吳榮章、余輝龍、宣大衡,「二氧化碳地下封存技術與展望」,鑛
冶,第52卷,第2期,頁17-33,2008
14. 林殿順,「台灣二氧化碳地質封存潛能及安全性」,經濟前瞻,環保專欄,頁2-5,2010
15. 范振暉、宣大衡,「以地下封存方式進行二氧化碳減量之可行性探討」,第二屆資源工程研討會論文集,頁278-283,2005
16. 宣大衡、范振暉,「二氧化碳地質封存所面對之問題」,工程汙染防治,102,頁109-126,2007
17. 姜禮仙,「岩石材料在主應力軸旋轉下之力學行為研究」,國立成功大學土木工程研究所碩士論文,1993
18. 桂椿雄,「超臨界流體萃取儀」,台灣超臨界流體協會電子報,第三期,2006
19. 陳中舜、邱耀平、陳偉忠、陳柏壯,「先進燃煤電廠二氧化碳減量技術比較與我國因應策略」,石化燃料電廠之二氧化碳封存技術簡介,臺電工程月刊,706,頁65-74,2007
20. 許思聰,「在主應力空間中木山層砂岩之力學行為研究」,國立成功大學土木工程研究所碩士論文,1996
21. 張育齊,「利用三維破壞準則評估魚藤坪砂岩於二氧化碳地質封存破裂壓力之研究」,國立成功大學土木工程研究所碩士論文,2013
22. 陳建宏,「小林村獻肚山深層崩塌地質構造及地質材料特性之研究」,國立成功大學土木工程研究所碩士論文,2011
23. 曾繼忠、陳大麟、胡興台、林再興,「永和山氣田二氧化碳封存先導試驗模擬研究」,鑛冶,第56卷,第1期,頁23-40,2011
24. 曾慶恒,「以水力破裂法探討高溫下大理石之張力強度」,國立成功大學土木工程研究所碩士論文,1994
25. 黃郁芳,「二氧化碳地質封存注儲壓力評估與加速礦化封存之研究:以鐵砧山背斜為例」,國立成功大學土木工程學系碩士論文,2011
26. 黃旭燦、楊耿明、吳榮章、丁信修、李長之、梅文威、徐祥宏,「斷層活動性觀測與地震潛勢評估調查研究,台灣陸上斷層帶地構造與地殼變形調查研究(5/5)-台灣西部麓山帶地區地下構造綜合分析」,經濟部中央地質調查所,共59頁,2004
27. 萬曉明、游宗翰、陳建志、許妙行、林東緯、談駿嵩、楊鏡堂,「減碳科技之前瞻發展」,科技發展政策報導,第三期,頁27-48,2008
28. 葉信宏,「以中空三軸試驗探討泥岩材料之力學行為研究」,國立成功大學土木工程研究所碩士論文,1999
29. 廖正傑,「岩石中空試體之三軸及剪力行為與其在岩石工程之應用」,國立成功大學土木工程學系博士論文,2012
30. 謝秉志、林再興、沈建豪、劉政典、吳珉豪、廖恒誼、劉謦賢,「永和山礦區鹽水層鑽屑礦物分析及二氧化碳礦化封存特性模擬試驗」,研究報告,2012
31. 羅貫麟,「二氧化碳地質封存潛能岩層三維應力破壞準則:以牛山背斜為例」,國立成功大學土木工程研究所碩士論文,2011
32. 嚴珮綺,「利用鑽井資料推估台灣新竹至台中地區的現地應力狀態」,國立中央大學地球物理研究所碩士論文,2012
33. Akai, K. and Mori, H., “Ein Versuch uber Bruchmecanismus von Sandstein unfer mehrachsigem Spannungszustand”, Peoc. 2nd Congr. ISRM Belgrade, Yugoslavia, Vol. II, Paper No. 3-30, 1970
34. Anderson, E. M., “The Dynamics of .Faulting”, Oliver and Boyd, Edinburgh, 1951
35. Alsayed, M. I., “Utilising the Hoek triaxial cell for multiaxial testing of hollow rock cylinders”, International Journal of .Rock Mechanics and Mining Sciences, Vol.39, issue 3, pp. 355-366, 2002
36. Byerlee, J. D., “Friction of .Rocks”, Pure and Applied Geophysucs, Vol. 116, pp. 615-629, 1978
37. Broms, B. B. and Casbrain, A. O., in Proceedings, Seventh International Conference on soil Mechanics and Foundation Engineering, Montreal, Vol. 1, pp. 179-183, 1965[間接引用]
38. Brendan, C. O’Kelly. and Patrick, J. N., “Development of a New Hollow Cylinder Apparatus for Stress Path Measurements over a Wide Strain Range”, Geotechnical Testing Journal, Vol. 28, No. 4, 2005.
39. Borst, R. DE., “Integration of .plasticity equations for singular yield functions”, Computer & Structure, Vol. 26, No. 5,pp. 823-829, 1987
40. Chen, W. F. and Han, D. J., “Plasticity for Structural Engineers”, Springer-Verlag Hong Kong Limited, pp. 46-72, 2007
41. Carranza-Torres, C., “Some Comments on the Application of the Hoek- Brown Failure Criterion for Intact Rock and Rock Masses to the Solution of Tunnel and Slope Problems”, Conference on Rock and Engineering Mechanics, Chapter 10, pp. 285-326, 2004
42. Cooling, L. F. and Smith, D. B., Journal of the Institution of. Civil Engineering, Vol. 3, pp. 333-343, 1935[間接引用]
43. CO2CRC. http://www.co2crc.com.au/
44. GCCSI. http://www.globalccsinstitute.com/
45. Goodman, R. E., “Introduction to Rock Mechanics”, Second Edition, 1989
46. Geuze, E. C. W. A. and Tan, T. T., in proceedings, Second International Congress on Rheology, V. G. Harrison, Ed., Oxford, 1953[間接引用]
47. Hoskins, E. R., “The Failure of.Thick-Walled Hollow Cylinders of Isotropic Rock”, International Journal of Rock Mechanics and Mining Sciences, Vol.6, pp.99-125, 1969
48. Hardin, B. O. and Drnevich, V. P., Journal of the soil Mechanics and Foundations Division, Proceedings of the American Society of the Civil Engineers, Vol. 15, No. SM6, pp. 603-624, 1972[間接引用]
49. Hight, D. W., Gens, A. and Symes, M. J., “The development of .a new hollow cylinder apparatus for investigating .the effects of principal stress rotation in soils”, Geotechnique, Vol. 33, NO. 4, pp. 355-383, 1983
50. Hubbert, M. K. and Willis, D. G., “Mechanics of. Hydraulic Fracturing”, Trans. AIME 210, pp. 153-168, 1957
51. Hung, J. H., Ma, K. F., Wang, C. Y., Song, S. R., Ito, H., Lin, W. and
Yeh, E. C., “Subsurface structure, physical properties, fault zone characteristics, and stress state in scientific drill holes of Taiwan Chelungpu-Fault Drilling Project”, Tectonophysics, Vol. 466, Issues 3-4, pp. 307-321, 2009
52. IPCC. “Carbon Dioxide Capture and Storage”, 2005
53. ISRM. “Rock Characterization Testing & Monitoring”, ISRM Suggested Methods, 1981
54. Kim, M. K. and Lade, P. V., “Modelling Rock Strength in Three Dimensions”, International Journal of Rock Mechanics and Mining Sciences & Geomech. Abstr. Vol. 21, No. 1, pp. 21-33, 1984
55. Kenneth, D. M., “A review and perspective on far-field hydraulic fracture geometry studies”, Journal of .Petroleum Science and Engineering, Vol. 24,
pp. 13-28, 1999
56. Reid, R. C., Prausnitz, J. M. and Poling, B. E., “The Properties of Gases and Liquids”, 4th ed., McGraw-Hill, New York, 1987
57. SOLID STATE CHEMISTRY. http://departments.icmab.es/ssc
58. Streit, J. E. and Hillis, R. R., “Estimating fault stability and sustainable fluid pressures for underground storage of CO2 in porous rock”, Energy.29: 1445-1456, 2004.
59. Sadda, A. S. and Townsend, F. C., “State of .The Art: Laboratory Strength Testing of Soils”, Laboratory Shear Strength of soils, ASTM STP 740, pp. 7-77, 1981
60. Shah, S., “A Study of the Behavior of .Jointed Rock Masses”, PhD dissertation, University of Toronto, Canada, 1992
61. Senseny, P. E., Mellegard, K. D. and Wagner, L. A., “Hollow cylinder test on natural rock salt”, Geotechnical Testing Journal, GTJODJ, Vol. 12, No. 2,
pp. 157-162, 1989
62. Taylor, G. I. and Quinney, H., Philosophical Transation, Royal Society, London, A230, pp. 323-363, 1931[間接引用]
63. Wright, D. K., Gilbert, P. A. and Sadda, A. S., “Shear devices for determining dynamics soil properties”, Peoceeding of .the Earthquake Engineering and soil Dynamics Conference, Geotechnical Engineering Division, ASCE, Pasadena, Vol. 2, pp. 1065-1075, 1978
64. Wijewickreme, D., Knodel, P. C. and Vaid, Y. P., “Stress Nonuniformities in Hollow Cylinder Torsional Specimens”, Geotechnical Testing Journal, Vol. 14, No. 4, pp. 349-362, 1991
65. Yu, S. B., Chen, H. Y. and Kuo, L. C., “Velocity field of GPS station in the Taiwan area”, Tectonophysics, Vol. 274, Issues 1-3, pp. 41-59, 1997
66. Zoback, M. D., Rummel, F., Jung, R. and Raleigh, C. B., “Laboratory Hydraulic Fracturing Experiments in Intact and Pre-fractured Rock”, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 14, pp. 49-58, 1977