簡易檢索 / 詳目顯示

研究生: 陳炳男
Chen, Ping-Nan
論文名稱: 質子交換膜燃料電池陰極結構性能研究
Cathode Structure Property Characterization for Proton Exchange Membrane in Fuel Cells
指導教授: 賴新一
Lai, Hsin-Yi
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 112
中文關鍵詞: 燃料電池擴散
外文關鍵詞: fuel cell, diffusion
相關次數: 點閱:67下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   質子交換膜燃料電池以其具有高能量轉換效率和低污染等特色,已成為倍受矚目的新能源技術。然而阻礙燃料電池的研發,除了功率密度的提升,昂貴的催化劑也限制了它的實用化。由於燃料電池為化學能直接轉換電能的裝置,電化學反應速率直接影響電池的發電效率,故針對電化學反應式中各反應物的傳遞現象進行分析,才能有效解決質量傳輸受阻問題,而電極結構為影響質量傳輸受阻的最大原因,因此若能藉由控制電極結構參數如電極孔隙率、氣體擴散層厚度及觸媒表面積等,使反應物的質量傳輸獲得改善,可望提高燃料電池的功率密度約10%。有鑑於此,本文將以質量傳輸的觀點來探討電極結構與電化學反應間的關係,建構一套以電化學反應為核心的理論模型,並進行燃料電池的性能分析。
      
      本研究以陰極反應為觀點,對各反應物之傳輸現象進行描述,首先根據電極內含水量變化,推估氧氣傳輸之有效擴散係數,並由Fick定律建立氧氣擴散方程。其次以交換電流密度、觸媒表面積和氧氣溶解濃度變化,對Butler-Volmer反應方程進行修正。最後利用歐姆定律描述電子與質子傳導,並透過物種守恆的觀念,推導出陰極過電位方程,以建構出電池內部質量傳輸、電化學反應及電子與質子傳導等估算方法,並整合為質子交換膜燃料電池理論模型。隨即將此理論模型進行電腦化,以系統化的方法快速求得電池輸出電壓。經由理論模擬結果與文獻實驗資料比對,證實本研究所建構之理論模型的正確性與可行性後,深入分析電極結構與外在控制參數對電池性能之關係。
      
      本研究以電化學反應為核心,並將質子交換膜含水量納入考量,建構出質子交換膜燃料電池理論模型。其Nafion含量與Pt載量理論估算值與文獻實驗值相互比對後,發現平均誤差為8.83%和8.16%,證實本文理論可精確預估燃料電池的電壓輸出。本文進一步針對電極結構進行分析,研究顯示增加電極孔隙率和觸媒表面積有助於提高氧氣的質量傳輸行為和電化學反應的進行,而氣體擴散層厚度對性能提升的影響甚微,故可根據此結果來改善電極結構並降低觸媒的使用量。在外在操作參數之影響方面,研究發現增加進氣壓力和工作溫度皆可提高功率密度,其中以壓力的影響最為顯著,可提供設計人員在應用上參考使用。最後藉由觸媒層結構最佳化與車輛電力供應等兩項應用,說明反應物之傳遞特性和電池堆設計流程,研究結果證實功率密度可提高7.98 %和單電池數目可減少3片,其中功率密度未能達成預期之目標,可能原因為電化學反應之生成水未能納入考量,導致氧氣質量傳輸不佳,但本文所提之理論模型仍具有實用價值。

      PEMFC is now a noticeable energy technology with its high rate of energy transformation and low pollution properties. However, the research and development of the fuel cell, was hindered in many aspects except the improvement of the density of power. It is practically crucial that the expensive catalyst was the major limited obstacle. Because the fuel cell is the device that exchanges the electric energy directly for chemical energy. The electric speed of chemical reaction influences the power generating efficiency of the battery directly, so analyse to the transmission phenomenon of every reactant in the electric chemical equation, could solve quality effectively and is transmitted. In order to improve the quality to transmit the greatest obstructed, one can make the quality of the reactant transmitted and being improvedded by controlling the structure parameters of the electrodes. The improvement can also made on the density of power of the battery and utilization ratio of the catalyst. To clarify this problem, this study tries to explore the internal mass transfers, the electrochemical reactions, and their relationships with the electrode structure of the full cell, and also to construct a theoretical model and simulation package to further analyze, and to precisely control the real voltage output of the PEMFC.
      
      This study used the equation of cathode reaction to describe the transmission phenomenon of every reactant. Firstly, to estimate the effective diffusion coefficient of hydrogen transmitting rate by measuring the varying of water content in the electrode. Next, to correct the electrochemical reaction equation by referring to the varying of exchange current density, surface area of catalyst, and oxygen dissolution consistency. Finally, to describe the electron and proton conduction by the Ohm's law, followed the species conservation idea to derive the over-potential equation in order to estimate the mass transmission in battery, electrochemical reaction and electron/proton conduction, and integrate those inferences into a theory model for PEMFC. Following the construction of theoretical model, one can compute the output voltage of the battery quickly with the computer simulation program. By comparing simulated result of this study with experiment materials in references, proved the correctness and feasibility of the models constructed by this study. And, the effects of electrode structure that affects the performance, and the influence of the external control parameters on the system output can then be analyzed.
      
      By comparing the estimated value in PEMFC theory constructed by this study to which provided in the prevalent document, it is found that the average error falls within the engineering acceptable level, which verifies that the actual output voltage of fuel cell can be estimated accurately by the theory of this study. Through the verification by applying optimized catalyst layer structure and the supply of electric power of vehicle, the model constructed by this study is proved to be feasible and practical.

    目錄 中文摘要.......................................................I 英文摘要......................................................II 誌謝.........................................................III 目錄..........................................................IV 圖目錄.......................................................VII 表目錄.........................................................X 符號說明......................................................XI 第一章 緒論...................................................1 1.1 研究動機..................................................1 1.2 研究目的..................................................3 1.3 研究方法..................................................5 1.4 章節瀏覽..................................................6 第二章 文獻回顧與研究流程.....................................8 2.1 本研究相關之文獻回顧......................................8 2.1.1 質子交換膜之結構性質文獻回顧............................8 2.1.2 電極結構模型之質量傳輸文獻回顧.........................12 2.1.3 電極電位估算模型之電子與質子傳導文獻回顧...............13 2.2 本研究之基本假設.........................................15 2.3 本研究之研究流程.........................................16 第三章 質子交換膜燃料電池電壓輸出與結構參數之模型建構........19 3.1 以Fick定律建立電極內氧氣擴散模型及觸媒層氧氣濃度.........19 3.1.1 以電極內含水量推估有效擴散係數.........................20 3.1.2 以物種守恆估算氧氣擴散通量.............................22 3.1.3 以擴散方程估算觸媒層之氧氣濃度.........................24 3.2 以氧氣濃度建立電化學反應模型及電流密度...................31 3.2.1 以法拉第電解定律建構Butler-Volmer反應方程..............31 3.2.2 以Butler-Volmer反應方程估算電流密度....................36 3.3 以電流密度建立電極電位估算模型及電壓輸出.................39 3.3.1 影響輸出電壓之系統因素探討.............................39 3.3.2 以歐姆定律建構陰極過電位方程...........................45 3.3.3 以陰極過電位方程估算電壓輸出...........................47 3.4 PEMFC電壓輸出與結構參數模型系統模擬及改善流程............50 第四章 電壓輸出與結構參數模擬之印證及其應用例................54 4.1 PEMFC電壓輸出與結構參數模型模擬與印證....................54 4.1.1 以Nafion含量探討質子傳導特性及文獻比對.................55 4.1.2 以Pt載量探討氧還原反應速率及文獻比對...................57 4.2 電極結構參數對電池性能之影響.............................63 4.2.1 以方差分析決定電極結構之重要參數.......................63 4.2.2 以氣體擴散層孔隙率探討氧氣擴散係數及傳輸量.............70 4.2.3 以觸媒層孔隙率探討氧氣擴散係數及傳輸量.................71 4.2.4 以觸媒表面積探討觸媒使用量.............................73 4.3 以調控溫度與壓力決定輸出電壓及系統改善策略...............79 4.4 質子交換膜燃料電池電壓輸出與結構參數模型之應用...........86 4.4.1 觸媒層結構最佳化.......................................86 4.4.2 車輛電力供應...........................................92 第五章 結論與建議............................................98 5.1 結論.....................................................98 5.2 建議....................................................101 參考文獻.....................................................103 附錄 A  質子交換膜燃料電池電極製程.........................108

    1.Antoine, O., Bultel, Y., Ozil, P., and Durand, R., “Catalyst Gradient for Cathode Active Layer of Proton Exchange Membrane Fuel Cell,” Electrochimica Acta, Vol. 45, pp. 4493-4500, 2000.
    2.Bernardi, D.M., “Water-Balance Calculations for Solid-Polymer -Electrolyte Fuel Cells,” Journal of The Electrochemical Society, Vol. 137, pp. 3344-3350, 1990.
    3.Bernardi, D.M., and Verbrugge, M.W., “Mathematical Model of a Gas Diffusion Electrode Bonded to a Polymer Electrolyte,” AIChE Journal, Vol. 37, No. 8, pp. 1151-1163, 1991.
    4.Bernardi, D.M., and Verbrugge, M.W., “A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell,” Journal of The Electrochemical Society, Vol. 139, No. 9, pp. 2477-2491, 1992.
    5.Bj rnbom, P., “Modelling of Double-Layered PTFE-bonded Oxygen Electrod,” Electrochimica Acta, Vol. 32, No. 1, pp. 115-119, 1987.
    6.Broka, K., and Ekdunge, P., “Modelling the PEM Fuel Cell Cathode,” Journal of Apply Electrochemistry, Vol. 27, No. 3, pp. 281-289, 1997.
    7.Broka, K., and Ekdunge, P., “Oxygen and Hydrogen Permeation Properties and Water uptake of Nafion 117 Membrane and Recast Film for PEM Fuel Cell,” Journal of Applied Electrochemistry, Vol. 27, pp. 117-123, 1997.
    8.Chu, D., and Jiang, R., “Comparative studies of Polymer Electrolyte Membrane Fuel Cell Stack and Single Cell,” Journal of Power Sources, Vol. 80, pp. 226-234, 1999.
    9.Costamagna, P., and Srinivasan, S., “Quantum Jumps in the PEMFC Science and Technology from the 1960s to the year 2000 PartII. Engineering, Technology Development and Application Aspects,” Journal of Power Sources, Vol. 102, pp. 253-269, 2001.
    10.Eikerling, M., and Kornyshev, A.A., “Modelling The Performance of The Cathode Catalyst Layer of Polymer Electrolyte Fuel Cells,” Journal of Electroanalytical Chemistry, Vol. 453, pp. 89-106, 1998.
    11.Farhat, Z.N., “Modeling of Catalyst Layer Microstructural Refinement and Catalyst Utilization in a PEM Fuel Cell,” Journal of Power Sources, Vol. 138, pp. 68-78, 2004.
    12.Gierke, T.D., and Hsu, W.L., Perfluorinated Iomomer Membrane, ACS Symposium, Ser. 180, pp. 283, American Chemical Society, Washington, DC, 1982.
    13.Gloaguen, F., Convert, P., Gamburzev, S., Velev, O.A., and Srinivasan, S., “An Evaluation of The Macro-Homogeneous and Agglomerate Model for Oxygen Reduction in PEMFCs,” Electrochimica Acta, Vol. 43, No. 24, pp. 3767-3772, 1998.
    14.Grujicic, M., and Chittajallu, K.M., “Design and Optimization of Polymer Electrolyte Membrane (PEM) Fuel Cells,” Applied Surface Science, Vol. 227, pp. 56-72, 2004.
    15.Gurau, V., Barbir, F., and Liu, H., “An Analytical Solution of a Half-Cell Model for PEM Fuel Cells,” Journal of The Electrochemical Society, Vol. 147, No. 7, pp. 2468-2477, 2000.
    16.Lee, J.H., and Lalk T.R., “Modeling Fuel Cell Stack System,” Journal of Power Sources, Vol. 73, pp. 229-241, 1998.
    17.Marr, C., and Li, X., “Composition and Performance Modelling of Catalyst Layer in a Proton Exchange Membrane Fuel Cell,” Journal of Power Sources, Vol. 77, pp. 17-27, 1999.
    18.Nguyen, T.V., and Knobbe, M.W., “A Liquid Water Management Strategy for PEM Fuel Cell Stacks,” Journal of Power Sources, Vol. 114, pp. 70-79, 2003.
    19.Parthasarathy, A., Srinivasan, S., and Appleby, A., “Temperature Dependence of the Electrode Kinetics of Oxygen Reduction at the Platinum/Nafion Interface-A Microeletrode Investigation,” Journal of the Electrochemical Society, Vol. 139, pp. 2530-2537, 1992.
    20.Press, W.H., Numerical Recipes in Fortran : The Art of Scientific Computing, Cambridge University Press, 1992.
    21.Qi, Z., and Kaufamn, A., “Low Pt Loading High Performance Cathodes for PEM Fuel Cells,” Journal of Power Sources, Vol. 113, pp. 37-43, 2003.
    22.Rao, S.S., Engineering Optimization : Theory and Practice, John Wiley & Sons, Inc., New York, 1996.
    23.Rho, Y.W., and Srinivasan, S., “Mass Transport Phenomena in Proton Exchange Membrane Fuel Cells Using O2/He,O2/Ar, and O2/N2 Mixtures II. Theoretical Analysis,” Journal of The Electrochemical Society, Vol. 141, No. 8, pp. 2089-2096, 1994.
    24.Sasikumar, G., Ihm, J.W., and Ryu, H., “Dependence of Optimum Nafion Content in Catalyst Layer on Platinum Loading,” Journal of Power Sources, Vol. 132, pp. 11-17, 2004.
    25.Song, D., Wang, Q., Liu, Z., and Navessin, T., “Numerical Optimization Study of The Catalyst Layer of PEM Fuel Cell Cathode,” Journal of Power Sources, Vol. 126, pp. 104-111, 2004.
    26.Song, D., Wang, Q., and Liu, Z., “Numerical Study of PEM Fuel Cell Cathode with Non-Uniform Catalyst Layer,” Electrochimica Acta, Vol. 50, pp. 731-737, 2004.
    27.Springer, T.E., Zawodzinski, T.A., and Gottesfeld, S., “Polymer Electrolyte Fuel Cell Model,” Journal of The Electrochemical Society, Vol. 138, No. 8, pp. 2334-2342, 1991.
    28.Springer, T.E., Wilson, M.S., and Gottesfeld, S., “Modeling and Experimental Diagnostics in Polymer Electrolyte Fuel Cells,” Journal of The Electrochemical Society, Vol. 140, No. 12, pp. 3513-3526, 1993.
    29.Squadrito, G., Maggio, G., Passalacqua, E., Lufrano, F., and Patti, A., “An Empirical Equation for Polymer Electrolyte Fuel Cell (PEFC) Behavior,” Journal of Applied Electrochemical Society, Vol. 29, No. 12, pp. 1449-1455, 1999.
    30.Srinivasan, S., Velev., O.A., and Parthasarathy, A., “High Energy Efficiency and High Power Density Proton Exchange Membrane Fuel Cells-Electrode Kinetics and Mass Transport,” Journal of Power Sources, Vol. 36, pp. 299-320, 1991.
    31.Wang, L., Husar, A., Zhou, T., and Liu, H., “A Parametric Study of PEM Fuel Cell Performances,” International Journal of Hydrogen Energy, Vol. 28, pp. 1263-1272, 2003.
    32.Wang, Q., Song, D., Navessin, T., Holdcroft, S., and Liu, Z., “A Mathematical Model and Optimization of The Cathode Catalyst Layer Structure in PEM Fuel Cells,” Electrochimica Acta, Vol. 50, pp. 725-730, 2004.
    33.Watanabe, M., Uchide, H., and Emori, M., “Analysis of Self-Humidification and Suppression of Gas-Crossover of Pt Dispersed Polymer Electrolyte Membrane for Fuel Cells,” Journal of the Electrochemical Society, Vol. 145, pp. 1137-1141, 1998.
    34.Williams, M.V., Kunz, H.R., and Fenton, J.M., “Operation of Nafion-Based PEM Fuel Cells with No External Humidication : Influence of Operating Conditions and Gas Diffusion Layers,” Journal of Power Sources, Vol. 135, pp. 122-134, 2004.
    35.You, L., and Liu, H., “A Parametric Study of the Cathode Catalyst Layer of PEM Fuel Cells Using a Pseudo-Homogeneous Model,” International Journal of Hydrogen Energy, Vol. 26, pp. 991-999, 2001.
    36.吳溪煌、田福助,電化學理論與應用,高立圖書有限公司,台北縣,1993。
    37.許寧逸、顏溪成,「由碳能朝向氫能的燃料電池」,科學發展,367期,2003年7月,頁6-11。
    38.黃鎮江,燃料電池,全華科技圖書股份有限公司,台北市,2003。
    39.黃朝榮、林正修,「燃料電池的心臟-電極模組」,科學發展,367期,2003年7月,頁26-29。
    40.熊楚強,電化學,文京圖書有限公司,台北縣,1996。

    下載圖示 校內:2010-09-02公開
    校外:2015-09-02公開
    QR CODE