簡易檢索 / 詳目顯示

研究生: 錢郁誠
Chian, Yu-Cheng
論文名稱: 以化學共沉澱法及尿素沉澱法分別製備微米級與奈米級氧化鉍粉末
Syntheses of Micron- and Nano-scaled Bi2O3 Powders by Chemical Co-precipitation and Homogeneous Precipitation methods
指導教授: 黃啟原
Huang, Chi-Yuen
共同指導教授: 吳毓純
Wu, Yu-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 71
中文關鍵詞: 氧化鉍化學沉澱法尿素沉澱法
外文關鍵詞: Bi2O3, chemical precipitation method, Homogeneous Precipitation method
相關次數: 點閱:103下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究第一部分以化學沉澱法製備氧化鉍 (Bi2O3) 粉末,使用硝酸鉍 (Bi(NO)3) 作為前驅鹽 (precursor) 提供鉍離子,氫氧化鈉作為沉澱劑提供氫氧基合成氧化鉍。實驗中,改變鉍離子濃度以及鉍離子與氫氧化鈉之化學計量比例 (NaOH/Bi3+),探討對於氧化鉍粉末結晶相與顯微結構之影響。XRD 分析結果顯示,當 NaOH/Bi3+ = 5,可在室溫下直接合成出單一相單斜結構之氧化鉍粉末,若再增加氫氧化鈉的計量,會產生氫氧化鉍 (Bi(OH)3) 之結晶相。SEM 分析結果得知,化學沉澱法合成之氧化鉍為微米級粉末,其形貌呈針狀。若增加 NaOH/Bi3+ 會使得氧化鉍粉末形貌之長寬比 (aspect ratio) 有變小的趨勢,且會促進晶粒之成長;增加反應系統中的鉍離子濃度,氧化鉍粉末形貌長寬比也會隨之變小,且同樣會促進晶粒成長。TEM 分析結果顯示,經由化學沉澱法所合成之氧化鉍為單晶 (single crystal),且針狀粉末在成核成長過程中,其從優生長方向為 [0 0 1]。
      第二部分以尿素沉澱法製備奈米級氧化鉍粉末,XRD 分析結果顯示,以尿素作為沉澱劑提供碳酸根,經由水熱反應會先得到中間相碳酸氧鉍 (Bi2O2CO3),然後經過熱處理去除碳酸根,可得到奈米級氧化鉍粉末。由 SEM 分析發現,鉍離子濃度為碳酸氧鉍粉末粒徑大小改變之主要因素,鉍離子濃度越大其合成之粉末粒徑越小。DTA/TG 分析結果顯示,起始碳酸氧鉍粉末越小,所需熱處理之溫度越低,因此,本研究使用鉍離子與尿素之化學計量比例 (Urea/Bi3+) 為 5 時,鉍離子濃度為 0.7 M 之合成條件下,以 500°C 持溫 2 小時進行熱處理可合成出奈米級氧化鉍粉末。可見光/紫外光吸收光譜顯示,當粉末晶粒較大時,會使能隙有變小的趨勢。

      In the first part of this study, micron-scale bismuth oxide (Bi2O3) powder have been prepared via chemical precipitation by using bismuth nitrate (Bi(NO3)3) as starting material and NaOH as the precipitating agent. The influence of bismuth concentration and molar ratio of NaOH (NaOH/Bi3+) on the formation of Bi2O3 was investigated. When NaOH/Bi3+ = 5, single phase of monoclinic Bi2O3 powder could be synthesized in room temperature. When the molar ratio of NaOH increased, the presence of Bi(OH)3 were observed. The morphology of Bi2O3 powder was needle-like. When the bismuth concentration or quality of NaOH increased, the aspect ratio of powder would decreased, and subjected to progressive increase of particle size. TEM analysis indicated that the needle-like particle is single particle and has a preferred growth direction of [0 0 1].
      The second part, nanoscale Bi2O3 powder have been prepared via urea-hydrothermal method. The hydrothermally synthesized precursor were indexed to a phase of bismutite (Bi2O2CO3). The precursor were heat-treated to nano-scale Bi2O3 powder. The major factor controlling Bi2O2CO3 particle size was the concentration of bismuth, an increase in bismuth concentration subjected to a progressive decrease of the particle size. When the particle size of Bi2O2CO3 decreased, the temperature of synthesized decreased. Therefore, in this study, the nano-scale Bi2O3 would be obtained at bismuth concentration at 0.7 M and the molar ratio of Urea and Bi3+ (Urea/Bi3+) at 5 after calcining at 500°C for 2 hours. As the particle size of Bi2O3 increased, band gap was decreased.

    摘要 I Abstract II 致謝 III 目錄 V 圖目錄 VII 表目錄 X 第一章 緒論 1 1-1 前言 1 1-2 研究目的 2 第二章 理論基礎與相關研究 3 2-1 氧化鉍晶體結構 3 2-2 氧化鉍合成方法 7 2-2-1 化學沉澱法 7 2-2-2 尿素沉澱法 10 第三章 實驗方法及步驟 13 3-1 起始原料 13 3-2 實驗流程 13 3-2-1 以化學沉澱法製備微米級氧化鉍 13 3-2-2 以尿素沉澱法製備奈米級氧化鉍 16 3-3 特性分析 16 3-3-1 相鑑定分析 16 3-3-2 顯微結構觀察 19 3-3-3 穿透式電子顯微鏡分析 19 3-3-4 熱差/熱重分析 21 3-3-5 紫外光/可見光光譜儀 21 第四章 實驗結果與討論 23 4-1 以化學沉澱法製備微米級氧化鉍粉末 23 4-1-1 鉍離子與氫氧化鈉之計量比例與結晶相的關係 23 4-1-2 鉍離子與氫氧化鈉計量比例與顯微結構的關係 25 4-1-3 鉍離子濃度與顯微結構的關係 28 4-1-4 反應時間與顯微結構之關係 38 4-1-5 TEM 分析 40 4-1-6 使用水熱法對氧化鉍結晶相與顯微結構之影響 40 4-2 以尿素沉澱法法製備奈米級氧化鉍粉末 45 4-2-1 使用水熱合成對產物之影響 45 4-2-2 鉍離子與尿素之計量比例與結晶相和顯微結構的關係 46 4-2-3 鉍離子濃度與顯微結構的關係 51 4-2-4 水熱溫度與顯微結構的關係 51 4-2-5 熱處理及相鑑定分析 55 4-2-6 吸收波長與能隙分析 61 第五章 結論 66 參考文獻 67

    1. K. Higaki, S. Kudo, and H. Ohnishi, “Highly Selective NO Detection Using Bi2O3-Based Materials” Electrochem. Solid-State Lett., 1, 107-109 (1998).
    2. A. Cabot, A. Marsal, J. Arbiol, J.R. Morante, “Bi2O3 as a selective sensing material for NO detection,” Sens. Actuators, B, 99, 74-89 (2004).
    3. J. W. Fergus, “Electrolytes for solid oxide fuel cells,” J. Power Sources, 162, 30-40 (2006).
    4. S. M. Haile, “Fuel cell materials and components,” Acta Mater., 51, 5981-6000 (2003).
    5. J. M. Ralph, A. C. Schoeler, M. Krumpelt, “Materials for lower temperature solid oxide fuel cells,” J. Mater. Sci. Lett., 36, 1161-1172 (2001).
    6. V. Fruth , G. Dobrescu,V. Bratan,C. Hornoiu,S. Preda,C. Andronescu, M. Popa, “Structural and electrochemical features of Bi2O3-based fast oxide ion conductors,” J. Eur. Ceram. Soc., 27, 4421-4424 (2007).
    7. V. Fruth, A. Ianculescu, D. Berger, S. Preda, G. Voicu, “Synthesis, structure and properties of doped Bi2O3,” J. Eur. Ceram. Soc., 26, 3011-3016 (2006).
    8. G. H. Hwang, W. K. Han, S. J. Kim, S. J. Hong, J. S. Park, H. J. Park and S. G. Kang, “An electrochemical preparation of bismuth nanoparticles by reduction of bismuth oxide nanoparticles and their application as an environmental sensor,” J Ceram Process Res., 10, 190-194 (2009).
    9. Huang Lei, Li Li-Ping, Yan Ting-Jiang, and Li Guang-She, “Synthesis, Characterization, and Photocatalytic Activity of Bi2O3, Chinese J. Struct. Chem. 28, 1458-1464 (2009).
    10. Fu-Lin Zheng, Gao-Ren Li, Yan-Nan Ou, Zi-Long Wang, Cheng-Yong Su and Ye-Xiang Tong, “Synthesis of hierarchical rippled Bi2O3 nanobelts for supercapacitor applications,” Chem. Commun., 46, 5021–5023 (2010).
    11. Xinglong Gou, Rong Li, GuoxiuWang, Zhixin Chen and DavidWexler, “Room-temperature solution synthesis of Bi2O3 nanowires for gas sensing application,” Nanotechnology 20, 495001 (2009)
    12. H. A. Harwig, “On the Structure of Bismuthsesquioxide: the α, β, γ, and δ-Phase,” Z.anorg. allg. Chem., 444, 151-166 (1978).
    13. C. N. R. Rae, G. V. Subba Rao, and S. Ramdas, “Phase Transformations and Electrical Properties of Bismuth Sesquioxide,” J. Phys. Chem., 73, 672-675, (1969).
    14. N. M. Sammes, G. A. Tompsett, H. Nafe and F. Aldinger, “Bismuth Based Oxide Electrolytes-Structure and Ionic Conductivity,” J. Eur. Ceram. Soc., 19, 1801-1826 (1999).
    15. Joachim Eberl and Horst Kisch, “Visible light photo-oxidations in the presence of α-Bi2O3,” Photochem. Photobiol. Sci., 7, 1400-1406 (2008).
    16. H. A. Harwig, and G. Gerards, “Electrical Properties of the α, β, γ, and δ-Phases of Bismuth Sesquioxide,” J. Solid State Chem., 26, 265-274 (1978).
    17. T. Takahashi, H. Iwahara and Y. Nagai, “High oxide ion conduction in sintered Bi2O3 containing SrO, CaO or La2O3,” J. Appl. Electrochem., 2, 97-104 (1972).
    18. T. Takahashi, T. Esaka, H. Iwahara, “High oxide ion conduction in the sintered oxides of the system Bi2O3-Gd2O3,” J. Appl. Electrochem., 5, 197-202 (1975).
    19. H.T. Cahen, T.G.M. Van Den Belt, J.H.W. De Wit and G.H.J. Broers, “The Electrical Conductivity of δ-Bi2O3 Stabilized by Isovalent Rare-earth Oxides R2O3,” Solid State Ionics, 1, 411-423 (1980).
    20. H. Iwahara, T. Esaka, and T. Sato, “Formation of High Oxide Ion Conductive Phases in the Sintered Oxides of the System Bi2O3 –Ln2O3 (Ln = La -Yb),” J. Solid State Chem., 39, 173-180 (1981)
    21. M. J. Verkerk and A. J. Burggraaf, “High Oxygen Ion Conduction in Sintered Oxides of the Bi2O3-Dy2O3 System,” J. Electrochem. Soc. 128, 75-82 (1981).
    22. M.J. Verkerk and A.J. Burggraaf, “High Oxygen Ion Conduction in Sintered Oxides,” Solid State Ionics 3/4, 463-467 (1981).
    23. T. Esaka, H. Iwahara, H. Kunieda, “Oxide ion and electron mixed conduction in sintered oxides,” J. Appl. Electrochem., 12, 235-240 (1982).
    24. T. Esaka, H. Iwahara, “Oxide ion and electron mixed conduction in the fluorite-type cubic solid solution in the system Bi2O3-Tb2O3.5, J. Appl. Electrochem., 15, 447-451 (1985).
    25. S. Nakayama, “Electrical properties of (Bi2O3)0.75(RE2O3)0.25 ceramics (RE=Dy, Y, Ho, Er and Yb),” Ceram. Int., 28, 907-910 (2002).
    26. Q. Zhen, G. M. Kale, G. Shi, R. Li, W. He, J. Liu, “Processing of dense nanocrystalline Bi2O3-Y2O3 solid electrolyte,” Solid State Ionics, 176, 2727-2733 (2005).
    27. M. B. Bellakki, A. S. Prakash, C. Shivakumara, M. S. Hegde and A. K. Shukla, “Solution-combustion synthesis of Bi1–xLnxO1.5 (Ln = Y and La–Yb) oxide ion conductors,” Bull. Mater. Sci., 29, 339-345 (2006).
    28. R. Li, Q. Zhena, M. Dracheb, A. Rubbensb, R. Vannier, “Preparation mechanism of (Bi2O3)0.75(Dy2O3)0.25 nano-crystalline solid electrolyte,” J. Alloys Compd., 494, 446-450 (2010).
    29. W. D. He, W. Qin, X. H. Wu,X. B. Ding, L. Chen, Z. H. Jiang, “The photocatalytic properties of bismuth oxide films prepared through the sol-gel method,” Thin Solid Films, 515, 5362-5365 (2007).
    30. G.H. Maher, C.E. Hutchins and S.D. Ross, “Preparation and Characterization of Ceramic Fine Powders Produced by the Emulsion Process,” J. Mater. Process. Technol., 56, 200-210 (1996).
    31. Z. Ai, Y. Huang, S. C Lee, L. Z. Zhang, “Monoclinic α-Bi2O3 photocatalyst for efficient removal of gaseous NO and HCHO under visible light irradiation,” J. Alloys Compd., 509, 2044-2049 (2011).
    32. Q. B. Yang, Y. X. Li, Q. R. Yin, P. L. Wang, Y. B. Cheng, “Hydrothermal synthesis of bismuth oxide needles,” Mater. Lett. 55, 46-49 (2002).
    33. C. H. Wang, C. L. Shao, L. J. Wang, L. Zhang, X. H. Li, Y. C. Liu, “Electrospinning preparation, characterization and photocatalytic properties of Bi2O3 nanofibers,” J. Colloid Interface Sci., 333, 242-248 (2009).
    34. G. Lina, D. Z. Tanc, F. F. Luoa, D. P. Chena, Q. Z. Zhaoa, J. R. Qiud, Z. Z. Xu, “Fabrication and photocatalytic property of α-Bi2O3 nanoparticles by femtosecond laser ablation in liquid.” J. Alloys Compd., 507, 143-146 (2010).
    35. L. Z. Li, B. Yan, “CeO2-Bi2O3 nanocomposite: Two step synthesis, microstructure and photocatalytic activity,” J. Non-Cryst. Solids, 355, 776-779 (2009).
    36. C. L. Wu, L. Shen, Q. L. Huang, Y. C. Zhang, “Hydrothermal synthesis and characterization of Bi2O3 nanowires,” Mater. Lett, 65, 1134-1136 (2011).
    37. Y. Xiong, M. Z. Wu, J. Ye, Q. W. Chen, “Synthesis and luminescence properties of hand-like α-Bi2O3 microcrystals,” Mater. Lett. 62, 1165-1168 (2008).
    38. J. K. Reddy, B. Srinivas, V. D. Kumari, and M. Subrahmanyam, “Sm3+-Doped Bi2O3 Photocatalyst Prepared by Hydrothermal Synthesis,” ChemCatChem, 1, 492-496 (2009).
    39. R. Irmawati, M.N. Noorfarizan Nasriah, Y.H. Taufiq-Yap, S.B. Abdul Hamid, Characterization of bismuth oxide catalysts prepared from bismuth trinitrate pentahydrate: influence of bismuth concentration,” Catal. Today, 93–5, 701-709 (2004).
    40. M. Prekajski, A. Kremenovic, B. Babic, M. Rosic, B. Matovic, A. Radosavljevic-Mihajlovic, M. Radovic, “Room-temperature synthesis of nanometric α-Bi2O3,” Mater. Lett, 64, 2247-2250 (2010).
    41. Y. Wang, J. Z. Zhao, Z. C. Wang, “A simple low-temperature fabrication of oblique prism-like bismuth oxide via a one-step aqueous process,” Colloids Surf., A, 377, 409-413 (2011).
    42. W. Li, “Facile synthesis of monodisperse Bi2O3 nanoparticles,” Mater. Chem. Phys., 99, 174-180 (2006).
    43. L. Zhang, W. Z. Wang, J. Yang, Z. G. Chen, W. Q. Zhang, L. Zhou, S. W. Liu, “Sonochemical synthesis of nanocrystallite Bi2O3 as a visible-light-driven photocatalyst,” Appl. Catal., A, 308, 105-110 (2006).
    44. H. A. Harwig, and A. G. Gerards, “The polymorphism of bismuth sesquioxide.” Thermochim. Acta., 28, 121-131 (1979).
    45. G. Gattow, and H. Schroder, “Bismuth oxide. III. The crystal structure of the high temperature modification of bismuth (III) oxide (δ-Bi2O3),” Z. Anorg. Allg. Chem., 318, 176-189 (1962).
    46. W. H. R. Shaw and J. Bordeaux, “The Decomposition of Urea in Aqueous Media,” J. Aa. Chem. Soc., 77, 4729-4733 (1955).
    47. A. D. Yoffe, “Low-dimensional systems: Quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems,” Adv. Phys. 51, 799-890 (2002).
    48. 汪建民,材料分析,中國材料科學學會
    49. T. Cosgrove, Colloid Science: Principles, Methods and Applications, 130-131 (2010).
    50. S. K. Park, K. D. Kim and H. T. Kim, “Preparation of silica nanoparticles: determination of the optimal synthesis conditions for small and uniform particles,” Colloids Surf., A, 197, 7-17 (2002).

    下載圖示 校內:2014-08-31公開
    校外:2014-08-31公開
    QR CODE