簡易檢索 / 詳目顯示

研究生: 許淵智
Hseu, Yuan-Chih
論文名稱: 含零值之聚合量之模式及其參數之估計
Modeling and Estimation Problem in Assembling Drops with zero value
指導教授: 陳重弘
Chen, Chong-Hong
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 48
中文關鍵詞: 合併檢測最大概似估計法動差估計法稀釋效用模型
外文關鍵詞: dilution effect model, group testing, MLE, MME
相關次數: 點閱:151下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   藉由合併的血液樣本來估計人體內毒素的含量是合併檢測中非常重要的一個應用.傳統二項式合併檢測模型必須假設沒有檢驗誤差.我們考慮檢驗的有限精確性所引起的量測誤差會導致嚴重的偏誤及不真確的結論。
      本論文將提出一個由二項及指數分配所混合而成的稀釋效用模型.我們將得到參數的最大概似估計量,並討論其性質.在不考慮檢驗誤差的情形下,建立一個含零觀測值的模型並得到參數的最大概似估計量與動差估計量.因為最大概似估計量並無解析解,因此使用模擬的方式來比較跟動差估計量之間的差異。

      One of the most important application of group testing is in the assembling drop of blood to estimate the amount of toxin in human body. The classical binomial group testing model must assume that groups are tested and classified without error. Our consideration is that the presence of measurement errors resulting from the limited precision of test may lead to severe bias and unrealistic conclusion.
      This thesis will propose a dilution effect model which is a mixture of binomial and exponential distribution. We derive maximum likelihood estimator of parameters and discuss the corresponding property of .Without considering testing error ,we set up a group testing model in the presence of zero observations and derive maximum likelihood estimator and method of moment estimator of parameters. Since the has no analytic solution, so we compare it with by using simulation technique.

    1 緒論 2 2 單一模型 4 2.1 模型建構 4 2.2稀釋效用模型 5 2.3最大概似估計 5 2.4期望值與變異數 8 3 合併模型 16 3.1 動差估計方法 16 3.2 最大概似估計方法 20 4模擬 23 4.1 模擬方法 23 4.2 模擬結果 24 5 結論 30 6 參考文獻 31 7 附錄 34

    1. Balakrishnan, N. and Basu, A P. (1996). The Exponential Distribution: Theory, Methods and Applications, AW Amsterdam, Netherlands.
    2. Balakrishnan, N. and Clifford, Cohen, A. (1990). Order Statistics and Inference: Estimation Methods, Academic Press, San Diego.
    3. Casella, G. and Berger, R. L.(1990).Statistical Inference, Duxbury Press, California.
    4. Dorfman, R. (1943). The detecting of defective members of large populations. Ann. Math. Statist, 14,436-440.
    5. Gastwirth, J. L. and Johnson, W. O. (1994).Screening With Cost-Effective Quality Control:Potential Applications to HIV and Drug Testing. Journal of the American Statistical Association, 89,972-981.
    6. Gupta, D. and Malina, R. (1999). Group testing in presence of classification errors.Statistics In Medicine, 18,1049-1068.
    7. Hughes, J. M. and Swallow, W. H. (1994). A Two -Stage Adaptive
    Group-Testing Procedure for Estimating Small Proportions. Journal of the American Statistical Association, 89,982-993.
    8. Hung, M. and Swallow, W. H. (1999). Robustness of Group Testing in the Estimation of Proportions. Biometrics, 55,231-237.
    9. Kleyle, R. M. and Dahiya, R. C. (1975). Estimation of parameters of mixed failure time distribution from censored data.Communications In Statistics,9,873-882.
    10. Litvak, E., Tu, X. M., and Pangano, M. (1994). Screening for the presence of a disease by pooling sera samples.Journal of the American Statistical Association, 89,424-434.
    11. Martinez, W. L. and Martinez, A. R. (2002).Computational Statistics Handbook with MATLAB, Chapman & Hall/CRC, Florida.
    12. Schneider, H. and Tang, K. (1990). Adaptive Procedures for the Two-Stage Group-Testing Problem Based on Prior Distribution and Costs. Technometrics, 32, 397-405.
    13. Sobel, M. and Elashoff, R. M. (1975).Group testing with a new goal, estimation. Biometrika, 62,181-193.
    14. Sukhatem, P. V. (1937) ,Tests of significance for sample of -population with two degree of freedom. Ann of Euge. 8,52-56.
    15. Tebbs, J. M. and Swallow, W. H. (2003).Estimating ordered binomial proportions with the use of group testing. Biometrika, 90,471-477.
    16. Tu, X. M., Litvak, E. and Pagano, M. (1994). Screening tests: Can We get more by doing less? Statistics In Medicine, 13,1905-1919.
    17. Tu, X. M., Litvak, E. and Pagano, M. (1995).On the informativeness and accuracy of pooled testing in estimating prevalence of a rare disease: Application to HIV screening. Biometrika, 82,287-297.
    18. 吳孟珍(2002). 血液中毒物量採聚合驗法之估計及最佳聚合數之研究.國立成功大學 應用數學研究所 碩士論文.
    19. 楊明宗和劉應興(1994). 數理統計學,華泰書局.

    下載圖示 校內:2006-07-21公開
    校外:2006-07-21公開
    QR CODE