簡易檢索 / 詳目顯示

研究生: 洪國翔
Hung, Kuo-Hsiang
論文名稱: 栽培稻與野生稻之植物螯合蛋白合成酵素基因家族分子演化
Molecular evolution of phytochelatin synthase gene family in the cultivated and wild rice
指導教授: 蔣鎮宇
Chiang, Tzen-Yuh
學位類別: 博士
Doctor
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 126
中文關鍵詞: 植物螯合蛋白合成酶基因家族連鎖不平衡天擇水稻
外文關鍵詞: Rice, linkage disequilibrium, PCS, gene family, selection
相關次數: 點閱:70下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 水稻是全球最重要的糧食作物之一,全球一半以上人口,約有30億人口以稻米為主食,廣泛種植於亞洲各國,隸屬於禾本科植物的水稻屬 (Oryza),全球約計有24種。近年來由於工業導致的環境污染日益嚴重,其中重金屬對土地的污染最為嚴重,鎘汙染是台灣主要的環境重金屬污染之一,台灣地區因為過去的工業污染,至今仍有許多的高濃度鎘汙染地的殘留,這些對代謝非必要的重金屬離子對植物體而言是生長的限制因子,根據野外調查,僅有少數種類可以在污染地存活並繁衍後代,植物螯合蛋白合成酶(phytochelatin synthase, PCS)基因與植物中抗重金屬的植物螯合蛋白的合成有關,而螯合蛋白主要功能在於與鎘結合形成複合物,並將其帶入細胞的液泡中。本研究主要探討水稻屬PCS基因家族PCS1以及PCS2基因所受到的天擇效應以及演化力量,並選取其它物種PCS基因序列進行PCS基因的親緣分析。結果顯示單雙子葉植物、蕨類以及線蟲中PCS基因都各自呈現單一系群(monoplyly),而水稻屬中的兩不同基因座的基因則各自形成單一系群,進一步發現水稻屬PCS1基因遭受到平衡性天擇效應,而PCS2基因卻遭受到負向天擇效應,導致在PCS1基因具有較高遺傳多型性。針對PCS1基因,可以發現Oryza sativa ssp. japonica以及O. sativa ssp. indica族群是由兩個不同的古老支系的個體所組成,因此造成Tajima’s D呈現正值,而非受到平衡性天擇的影響,野生稻兩物種卻是受到方向性天擇的影響。然而在PCS2基因中,不論在栽培稻或野生稻都受到方向性天擇影響,其中O. sativa ssp. indica所受到的是正向天擇,其餘則為負向天擇。進一步探討兩基因連鎖不平衡效應(LD)效應,顯示PCS1基因受到較低程度的LD,這主要是因為PCS1基因所受到的平衡性天擇效應以及多次的重組事件,因此造成PCS1相對PCS2有較低的LD。

    Rice, one of the staple crops in the world, is cultivated widely in Asia. Oryza, a genus of the Poaceae, consists of three sections and 24 species. Since last century, the industrial pollution has been seriously contaminating environments. Among various pollutants, heavy metals in the soil influences the crop growth to a great extent. Of them, cadmium is toxic to most animals and flowering plants. To vascular plants, cadmium is a nonessential metal; only species or populations that are tolerant to cadmium can survive in the wild. Phytochelatin (PC) proteins, which are synthesized from glutathione via a transpeptidation reaction mediated by the phytochelatin synthase (PCS), enable plants to tolerate heavy-metal ions. This study focuses on molecular evolution and selection effects of the PCS gene family in Oryza. Phylogenetic analysis revealed that monocots, dicots, and pteridophytes each formed a monophyletic group. Reciprocal monophyly of PCS1 and PCS2 paralogs in the Oryza was supported. As directional selection as an evolutionary force shaping the PCS1 gene was detected in other species, PCS1 gene mediated by maintaining the ancestreal lineages in cultivated rice, resulting positive Tajima’s D values. In contrast, PCS2 genes evolved under a negative selection in the genus. Linkage disequilibrium (LD) decayed slowly. Compared to the PCS2 gene, a lower level of LD in PCS1 gene was detected. The possible explanations are that the balancing selection and high-frequency recombination events of PCS1 have led to such lower LD.

    中文摘要...............................................................I 英文摘要...............................................................II 致謝...................................................................III 目錄...................................................................IV 表目錄.................................................................VII 圖目錄.................................................................IX 第一章 前言 一 植物與環境逆境.....................................................1 二 重金屬污染對植物生長與族群結構的衝擊...............................3 三重金屬高聚積植物....................................................4 四 重金屬吸附相關基因之研究...........................................5 五 植物螯合蛋白合成酶研究歷史.........................................7 六 植物修復技術.......................................................13 七 基因複製與基因家族之探討...........................................14 八 天擇模式之探討.....................................................16 九 天擇效應與族群統計學...............................................19 十 水稻屬物種簡介.....................................................21 十一 栽培稻與野生稻...................................................23 十二 研究目的.........................................................25 第二章 材料與方法 一 材料...............................................................26 二 實驗方法...........................................................26 三 資料分析...........................................................28 第三章 結果 一 水稻屬植物螯合蛋白酵素PCS1以及PCS2基因遺傳變異之特性 1 PCS1基因............................................................30 2 PCS2基因............................................................33 3 PCS1以及PCS2基因親緣關係............................................35 二 栽培稻(Oryza sativa)以及野生稻(Oryza rufipogon)植物螯合蛋白酵素 PCS1基因座遺傳變異之特性 1 遺傳變異............................................................36 2 天擇效應之檢測......................................................38 3 PCS1之親緣關係......................................................41 4 PCS1 基因之連鎖不平衡關.............................................42 三 栽培稻(Oryza sativa)以及野生稻(Oryza rufipogon)植物螯合蛋白酵素 PCS2基因座遺傳變異之特性 1 遺傳變異............................................................43 2 天擇效應之檢測......................................................45 3 PCS2之親緣關係......................................................48 4 PCS2 基因之連鎖不平衡關係...........................................49 第四章 討論 一 水稻屬物種PCS基因家族親緣關係與天擇力量之探討 1 水稻屬物種PCS基因家族親緣關係.......................................50 2水稻屬物種PCS基因家族天擇力量之探討..................................53 二 栽培稻(Oryza sativa)以及野生稻(Oryza rufipogon) 植物螯合蛋白酵素 PCS基因家族遺傳變異以及所受天擇效應之探討 1 PCS1................................................................57 2 PCS2................................................................62 三 栽培稻(Oryza sativa)以及野生稻(Oryza rufipogon) 植物螯合蛋白 酵素PCS基因家族之連鎖不平衡探討.....................................69 第五章 結論............................................................71 第六章 未來展望........................................................72 第七章 參考文獻........................................................73 表.....................................................................85 圖.....................................................................111

    Andrea, J. B., C. P. Daven. Linkage limits the power of natural selection in Drosophila. Proceedings of the National Academy of Sciences, USA. 99: 13616-13620. 2002.
    Baker, A. J. M., P. L. Walker.. Ecophysiology of metal uptake by tolerant plants, heavy metal tolerance in Plants. In A. J. Shaw. Evolutionary Aspects. CRC Press, Boca Raton. 155-177. 1990
    Bao, J. S., H. Corke, M. Sun. Nucleoeide diversity in Starch synthase IIa and validation of single nucleotide polymorphisms in relation to starch gelatinization temperature and other physicochemical. Theoretical and Applied Genetics. 113:1171-1183. 2006.
    Bert ,V., M. R. Macnair, P. de Laguerie, P. Saumitou-Laprade, D. Petit. Zinc tolerance and accumulation in metallicolous and nonmetallicolous populations of Arabidopsis halleri (Brasscicaceae). New Phytologist 146:225-234. 2000.
    Bert, V., P. Meerts, P. Saumitou-Laprade, P. Salis, W. Gruber, N. Verbruggen. Genetic basis of Cd tolerance and hyperaccumulation in Arabidopsis halleri. Plant and Soil 249: 9-18. 2003.
    Barrier, M., R. H. Robichaux, M. D. Purugganan. Accelerated regulatory gene evolution in an adaptive radiation. Proceedings of the National Academy of Sciences, USA. 98:10208-10213. 2001.
    Bishop, J. G., A. M. Dean, T. Mitchell-Olds. Rapid evolution in plant chitinase: molecular targets of selection in plant-pathogen coevolution. Proceedings of the National Academy of Sciences, USA. 97:5322-5327. 2000.
    Caldwell, K. S., J. Russell, P. Langridge, W. Powell. Extreme population dependent linkage disequilibrium detected in an inbreeding plant species, Hordeum vulgare. Genetics172: 557-567. 2006.
    Chaitanya, K. V., D. Sunder, S. Masilamani, A. R. Reddy. Variation in heat stress-induced antioxidant enzyme activities among three mulberry cultivars. Plant Growth Regul. 36: 238-248. 2002.
    Chen, J., J. Zhou, P. B. Goldsbrough. Characterization of phytochelatin synthase from tomato. Plant Physiology. 101: 165-172.1997.
    Chen, C. N., Y. C. Chiang, T. H. Ho, B. A. Schaal, T. Y. Chiang. Coalescent process and relaxation of selective constraints leading to constrasting genetic diversity at paralogs AtHVA 22d and AtHVA22e in Arabidopsis thaliana. Molecular Phylogenetics and Evolution 32: 616-626. 2004.
    Chiang, Y.C., X. J. Ge, C. H. Chou, W. L. Wu, T. Y. Chiang. Nucleotide sequence diversity at the methionine synthase locus in endangered Dunnia sinensis (Rubiaceae): an evaluation of the positive selection hypothesis.
    Molecular Biology and Evolution. 19:1367-75. 2002.
    Cho, M., A.N. Chardonnens, K. J. Dietz. Differential heavy metal tolerance of Arabidopsis halleri and Arabidopsis thaliana: a leaf slice test. New Phytologist 158:287-298. 2003.
    Cazale, A. C., S. Clemens. Arabidopsis thaliana expresses a second functional phytochelatin synthase. FEBS Letter 507: 215-219. 2001.
    Clemens, C.,.S, E. J. Kim, R. Howden, B. Rolls. Tolerance to toxic metal s by a gene family of phytochelatin synthase from plants and yeast. EMBO Journal 18: 3325-3333. 1999.
    Clemens, S. Evolution and function of phytochelatin synthase. Journal of Plant Physiology 163: 319-332. 2006.
    Cobbett, C. S., M. J. May, R. Howden, B. Rolls. The glutathione-deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thaliana is deficient in g-glutamylcysteine synthetase. Plant Journal 16: 73-78. 1998.
    Cobbett, C. S. Phytochelatins and their roles in heavy metal detoxification. Plant Physiology 123: 825-832. 2000.
    Comai, L., P. T. Anand, W. Ken, H. Rachel, H. R. Steven, S. Yvonne, B. Breck. Phenotypic instability and rapid gene silencing in newly formed Arabidopsis Allotetraploids. Plant Cell 12: 1551-1567. 2000.
    Crawford, D. J. 1990. Plant Molecular Systematics: Macromolecular Approaches. John Wiley, New York, USA.
    Curie, C., J. M. Alonso, M. LeJea, J. R. Ecker, J. F. Briat. Involvement of Nramp1 from Arabidopsis thaliana in iron transport. Biochemical Journal 347: 749-755. 2000.
    dela Fuente, J. M., Y. Ramirez-Rodriguez, J. L. Cabrera-Ponce, E. L Herrera. Aluminium tolerance in transgenic plants by alteration of citrate synthesis. Science 276:1566-1568. 1997.
    Doyle, J. J., J. L. Doyle. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11-15. 1987.
    Dubois, S., P.O. Cheptou, C. Petit, P. Meerts, M. Ponceler, X. Vekemans, C. Lefebvre, J. Escarre. Genetic structure and mating systems of metallicolous and nonmetallicolous populations of Thlapsi caerulescens. New Phytologist 157:633-641. 2003.
    Eriksson, M. E., M. Israelsson, O. Olsson, T. Moritz. Increased giberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nature Biotechnology 18: 784-788. 2000.
    Escarre, J., C. Lefebvre, W. Gruber, M. Leblanc, J. Lepart, Y. Riviere, B. Delay. Zinc and cadmium hyperaccumulation by Thlapsi caerulescens from metalliferous and nonmetalliferous sites in the Mediterranean area: implications for phytoremediation. New Phytologist 145:429-437. 2000.
    Excoffier, L., P. E. Smouse. Using allele frequencies and geographic subdivision to reconstruct gene trees within a species: Molecular variance parsimony. Genetics. 136: 343-359. 1994.
    Feldman, M., G. Galili, A. Levy. 1986. Genetic and evolutionary aspects of allopolyploidy in Weat. In: Barigozzi C (ed), The Origin and Domesication of Cultivated Plants, pp. 83-100. Elsevierm Amsterdam.
    Flint-Garcia, S. A., J. M. Thornsberry, E. S. Buckler. Structure of linkage disequilibrium in plants. Annual of the Reviews Plant Biology. 54: 357-374. 2003.
    Force, A., M. Lynch, F. B. Pickett, A. Amores, Y. L. Yan, J. Postlethwait. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151: 1531-1545. 1999.
    Ford, V. S., L. D. Gottlieb. Single mutation silencing PGIC2 genes in two very recent allotetraploid species of Clarkia. Evolution 56: 699-707. 2002.
    Fu, Y. X. W. H. Li. Statistical tests of neutrality of mutations. Genetics. 133: 693-709. 1993.
    Futuyma, D. J. 1997. Evolutionary Biology (Third Edition). Sinauer associates, Inc. Sunderland, Massachuseatts.
    Garris, A. J., S. McCouch, R., S. Kresovich. Population structure and its effect on haplotype diversity and linkage disequilibrium surrounding the xa5 locus of rice (Oryza sativa L.). Genetics. 165:759-769. 2003.
    Gaut, B. S., J. F. Doebley. DNA sequence evidence for the segmental allotetraploid origin of maize. Proceedings of the National Academy of Sciences, USA 94: 6809-6814. 1997.
    Gillespie,J. H. 1991. The Causes of Molecular Evolution. Oxford University Press, Oxford.
    Gottlieb, L. D., V. S. Ford. A recently silenced duplicate PgiC locus in Clarkia. Moolecular Biology and Evolution 14: 125-132. 1997.
    Grichko, V. P., B. Filby, B. R. Glick. Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb and zinc. Journal of Biotechnolohy 81: 45-53. 2000.
    Grill, E., E. L. Winnacker, M. H. Zenk. Phytochelatins, a class of heavy-metal-binding from plants, are functionally analogous to metallothioneins. Proceedings of the National Academy of Sciences, USA 84: 439-443. 1987.
    Grill, E., S. Loffler, E L.Winnacker, M. H. Zenk. Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proceedings of the National Academy of Sciences, USA 86: 6838-6842. 1989.
    Ha, S. B., A. P. Smith, R. Howden, W. M. Dietrich, S. Bugg, M. J. O’Connel, P. B. Goldsbrough, C. S. Cobbett. Phytochelatin synthase genes from Arabidopsis and the yeast, Schizosacharomyces pombe. Plant Cell 11: 1153-1164. 1999.
    Hart, G. E. 1996. Genome analysis in the Triticeae using isozymes. In. Jauhar P. J. (ed), Methods of genome analysis in plants, pp. 195-209. CRC Press, Boca Raton, FL.
    He, Z., J. Li, H. Zhang, M. Ma. Different effects of calcium and lanthanum on the expression of phytochelatin synthase gene and cadmium absorption in Lactuca sativa. Plant Science168: 309-318. 2005.
    Helariutta, Y., M. Kotilainen, P. Elomaa, N. Kalkkinen, K. Bremer, T. H. Teeri, V. A. Albert. Duplication and functional divergence in the chalcone synthase gene family in Asteraceae: evolution with substrate change and catalytic simplification. Proceedings of the National Academy of Sciences, USA 93: 9033-9038. 1996.
    Higgins, D. G., A. J. Bleasby, R. Fuchs. CLUSTAL V: improved software for multiple sequence alignment. CABIOS 8: 189-191. 1992.
    Hirschi, K. D., V. D. Korenkov, N. L. Wilganowski, G. J. Wagner. Expression of Arabidopsis CAX2 in tobacco Altered metal accumulation and increased manganese tolerance. Plant Physiology 124: 125-133. 2000.
    Howden, R., P. B. Goldsbrough, C. R. Andersen, C.S. Cobbett. Cadmium-sensitive, cad1, mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiology. 107:1059-1066. 1995.
    Hyten, D., I. Choi, Q. Song, R. C. Shoemaker, R. L. Nelson, J. M. Costa, J. E. Specht, P. B. Cregan. highly variable patterns of Linkage disequilibrium in multiple soybean populayions. Genetics 175: 1937-1944. 2007.
    Ishii, T., T. Terachi, K. Tsunewaki. Restriction endonuclease analysis of chloroplast DNA from A-genome diploid species of rice. Japanese Journal of Genetics 63:523-536. 1988.
    Kägi, J. H. R. Overview of metallothionein. Methods in Enzymoloy 205: 613-626. 1991.
    Kato, S., H. Kosaka, S. Hara. On the affinity of rice varieties as shown by the fertility of hybrid plants. Bulletin Sciences Faculty of Agriculture Kyushu University 3:132-147. 1928.
    Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge, Massachusetts.
    King, J. L., T. H. Jukes.. Non-Darwinian evolution. Science. 164: 788-789. 1969
    Klapheck, S., S. Schlunz, L. Bergmann. Synthesis of phytochelatins and homo-phytochelatins in Pisum sativum L. Plant Physiology. 107: 515-521. 1995.
    Kramer, U. Cadmium for all meals – plants with an unusual appetite. New Phyotlogist 145:1-3. 2000.
    Kumar, S., K. Tamura, I. B. Jakobsen, M. Nei. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17: 1244-1245. 2001.
    Larhammer, D., C. Risinger. Why so few pseudogenes in tetraploid species? Trends in Genetics 10: 418-419. 1994.
    Laroche J., P. Li, J. Bousquet. Mitochondrail DNA and monocot-dicot divergence time. Molecular Biology and Evolution 12: 1151-1156. 1995.
    Lee, Y. H., T. Ota , V. D. Vacquier. Positive selection is a general phenomenon in the evolution of abalone sperm lysin. Molecular Biology and Evolution 12:231-238. 1995.
    Levvit, J. Response of plants to environment stress. Vol. a Chilling, freezing and high temperature stress. Academic press New York. 1980.
    Li, W. H. Rate of gene silencing at duplicate loci: a theoretical study and interpretation of data from tetraploid fishes. Genetics 95: 237-258. 1980.
    Li, W. H. Evolution of duplicated genes. In Evolution of Genes and Proteins, edited by M. Nei., R. K. Koehn. Sinauer, Sunderland, Mass. 14-37. 1983.
    Li, W. H. 1997. Molecular evolution. Sinauer associates,Inc., Sunderland, Massachusetts, USA.
    Li, Y., O. P. Dhankher, L. Carreira, D. Lee, A. Chen, J. I. Schroeder, R. S. Balish,R. B. Meagher. Overexpression of phytochelatin synthase in Arabidopsis leads to eEnhanced arsenic tolerance and cadmium hypersensitivity. Plant an Cell Physiology 45: 1787-1797. 2004.
    Lin, J., A. H. d. Brown ,M. T. Clegg. Heterogeneous geofraphic patterns of nucleotide sequence diversity between two alcohol dehydrogenease genes in wild barley (Hordeum vulgare subspecies sopntaneum). Proceedings of the National Academy of Sciences, USA 98:531-536. 2001.
    Liu, A., M. Burke. Patterns of nucleotide diversity in wild and cultivated sunflower. Genetics 173: 321-330. 2006.
    Londo, J. P., Y. C. Chiang, K. H. Hung, T. Y. Chiang, B. A. Schaal. Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proceedings of the National Academy of Sciences, USA 103:9578–9583. 2006.
    Long, M., K. Thornton. Gene duplication and evolution. Seience. 293:1551. 2001.
    Loscos, J., L. Naya, J. Ramos, M. R. Clemente, M A. Matamoros, M. Becana A reassessment of substrate specificity and activation of phytochelatin synthases from model plants by physiologically relevant metals. Plant Physiology 140: 1213-1221. .2006.
    Lynch, M. Gene duplication and evolution. Seience 297. 945-947. 2002.
    Lynch, M., J. S. Conery. The evolutionary fate and consequences of duplicated genes. Science 290:1151-1155. 2000 .
    Memon, A. R., D. Aktoprakligil, A. Özdemir, A. Vertii. Heavy metal accumulation and detoxification mechanisms in plants. Turkey Journal of Botany 25: 111-121. 2001.
    Mengoni, A., C. Barabesi, C. Gonnelli, F. Galardi, R. Gabbrielli, M. Bazzicalupo Genetic diversity of heavy metal-tolerant populations in Silene paradoxa L. (Caryophyllaceae): a chloroplast microsatellite analysis. Molecular Ecology 10:1909-1916. 2001.
    Mengoni, A., A. J. M. Baker, M. Bazzicalupo, R. D. Reeves, N. Adiguzel, E. Chianni, F. Galardi, R. Gabbrielli, C. Gonnelli. Evolutionary dynamics of nickel hyperaccumulation in Alyssum revealed by ITS nrDNA analysis. New Phytologist 159:691-699. 2003.
    Miyashita, N. T., K. Yoshida, T. Ishii. DNA variation in the metallothionein genes in wild rice Oryza rufipogon: relationship between DNA sequence polymorphism, codon bias and gee expression. Genes genetics and systematics 80: 173-183. 2005.
    Miyata, T., T. Yasunaga. Molecular evolution of mRNA: a method for estimation evolutionary rates of synonymous and amino acid substitutions from homologous nucleotide sequences and its applications. Journal of Molecular Evolution 16:23-36. 1980.
    Morishima, H., Y., H. I. Oka, W. T. Cheng. Directions of differentiation in populations of wild rice, Oryza perennis and O. sativa F. spontanea. Evolution 15:326-339. 1961.
    Morishima, H., Y. Sano, H. I. Oka. Evolutionary studies in cultivated rice and its wild relatives. Oxford Surveys in Evolutionary Biology 8:135-184. 1992.
    Morrell, P. L., K. E. Lundy, M. T. Clegg. Distinct geographic patterns of genetic diversity are maintained in wild barley (Hordeum vulgare ssp. spontaneum) despite migration. Proceedings of the National Academy of Sciences, USA 100: 10812-10817. 2003.
    Muller, L. A. H., M. Lambaerts, J. Vangronsveld, J. V. Colpaert. AFLP-based assessment of the effects of environmental heavy metal pollution on the genetic structure of pioneer populations of Suillus lutus. New Phytologist 164: 297-304. 2004.
    Murasugi, A., C. Wada, Y. Hayashi. Cadmium-binding peptide induced in fission yeast, Schizosaccharomyces pombe. Journal of Biochemistry 90:
    1561-1564. 1981.
    Nei, M., F. Tajima. Maximum likelihood estimation of number of nucleotide
    substitution from restriction site data. Genetics 105: 207-217. 1983.
    Nordborg, M., S. Tavare. Linkage disequilibrium: what history has to tell us. Trends in the Genetics 18:83-90. 2002.
    Ohta, T. Further examples of evolution by gene duplication revealed through DNA sequence comparisons. Genetics 138: 1331-1337. 1994.
    Oka, H. I. Intervarietal variation and classification of cultivated rice. Indian Journal of Genetic Plant Breed 18:79-89. 1958.
    Oka, H. I. 1988. Origin of Cultivated Rice. JSSP/Elsevier, Tokyo, Amsterdam.
    Oka, H., T. Ohta, A examination of the generation-time effect on molecular evolution. Proceedings of the National Academy of Sciences USA 90:10676-10680. 1993.
    Oka, J. I., W. T. Chang. The impact of cultivation on populations of wild rice, Oryza sativa F. Spontanea. Phyton 13:105-117. 1959.
    Oka, J. I., W. T. Chang. Rice varieties intermediate between wild and cultivated forms and the origin of Japonica type. Botanical Bulletin of Academica Sinica 3:109-131. 1962.
    Olsen, K. M., A. Womack, A. R. Garrett, J. I. Suddith, M. D. Purugganan. Contrasting evolutionary forces in the Arabidopsis thaliana floral developmental pathway. Genetics 162:941-950. 2002.
    Olsen, K., A. L. Caicedo, N. Polato, A. McClung, S. McCouch, M. D. Purugganan. Selection under domestication: evidence for a sweep in the rice Waxy genomic region. Genetics 173: 975-983. 2006.
    Ortiz ,D. F., T. Ruscitti, K. F. McCue, D. W. Ow. Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. Journal of Biological Chemistry 270: 4721- 4728. 1995.
    Otto, S. P., J. Whitton. Polyploid incidence and evolution. Annual of Review of Genetics 34:401-437. 2000.
    Oven, M., J. E. Page, M. H. Zenk, T. M.Kutchan. Molecular characterization of the homo-phytochelatin synthase of soybean Glycine max: relation to phytochelatin synthase. Journal Biological Chemistry 277: 4747-4754. 2002.
    Pauwels, M., P. Saumitou-Laprade, A. Catherineholl, D. Petit, I. Bonnin.
    Multiple origins of metalicolous populations of the pseudometallophyte Arabidopsis halleri (Brassicaceae) in central Europe: the cpDNA testimony. Molecular Ecology 14:4403-4414. 2005.
    Pichersky, E., D. Soltis, P. Soltis. Defective chlorophyll a/b binding protein genes in the genome of a homosporous fern. Proceedings of the National Academy of Sciences of the USA 87: 41-62. 1990.
    Podar, D., M. H. Ramsey, M. Hutchings. Effect of cadmium, zinc and substrate
    heterogeneity on yield, shoot metal concentration and meatl uptake by Brassica
    juncea: implications for human health risk assessment and phytoremediation. New Phytologist 163:313-324. 2004.
    Pollard, A. J., K. D. Powell, F. A. Haper, J. A. C. Smith. The genetic basis of metal hyperaccumulation in plants. Critical Reviews in Plant Sciences 21:539-566. 2002.
    Prince, V. E., F. B. Pickett. Splitting pairs: the diverging fates of duplicated genes. Nature Reviews genetics 3:827-837. 2002.
    Rafalski, A., M. Morgante. Corn and humans: recombination and linkage disequilibrium in two genomes of similar size. Trends in the Genetics 20: 103-111. 2004.
    Ramos, J., M. R. Clemente, L. Naya, J. Loscos, C. Pérez-Rontomé, S. Sato, S. Tabata, M. Becana. Phytochelatin synthases of the model legume Lotus japonicus. a small multigene family with differential response to cadmium and alternatively spliced Variants. Plant Physiology 143:1110-1118. 2007.
    Rauser, W. E. Phytochelatins and related peptides: structure, biosynthesis, and
    function. Plant Physiology 109:1141-1149. 1995.
    Rauser, W. E. Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytin and metallothioneins. Cell Biochemistry and Biophysics 31: 19-48. 1999.
    Reeves, R. D., A. J. M. Baker. Metal accumulating plants. In: Ensley BD, Raskin I (eds.) Phytoremediation of toxic metals: using plants to cleanup the environment. New York, USA:: John Wiley & Sons, pp. 192-229. 1999.
    Richard, C. C., R. L. Small, J. F. Wandel. Duplicated gene evolve independently after polyploidy formation in cotton. Proceedings of the National Academy of Sciences of the USA 96: 14406-14411. 1999.
    Rozas, J., R. Rozas. DnaSP versin 3.0: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15: 174-175. 1999.
    Rozas, A. R., H. Harpending. Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution 9: 552-569. 1992.
    Rozas, J., J. C. Sanchez-DelBarrio, X. Messeguer and R. Rozas. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496-2497. 2003.
    Sanderson, M. J. 2002. R8S: Analysis of rates (‘r8s’) of evolution (and other
    stuff), version 1.5. Section of Evolution and Ecology, University of California, Davis. Distributed at http://ginger.ucdavis.edu/r8s/.
    Sanger, F. G., G. Nickle, A. R. Coulson. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the USA 74:5463-5467. 1977.
    Sato, Y. I., R. Ishikawa, H. Morishima. Non-random association of genes and characters found in indica x japonica hybrids of rice. Heredity 65:75-79. 1980.
    Second, G. Origin of the genetic diversity of cultivated rice (Oryza ssp.): study of the polymorphism scored at 40 isozyme loca. Japanese Journal of Genetics 57:25-57. 1982.
    Small, R. L., J. F. Wendel. Differential evolutionary dynamics of duplicated paralogous Adh loca in allotetraploid cotton (Gossypium). Molecular Biology and Evolution 19:597-607. 2002.
    Smith, F. A. Healthy soils, healthy people. New Phytologist 158:419-443. 2003.
    Tajima, F. 1989. Statistical method for resting the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585-595.
    Tang, T., J. Lu, J. Huang, J. He, S. R. McCouch, Y. Shen, Z. Kai, M. D. Purugganan, S. Shi, C. I. Wu. Genomic varation in rice: genesis of highly polymorphic linkage blocks during domestication. PLoS Genetics 199: 1824-1833. 2006.
    Tan-Kristanto, A., A. Hoffmann, R. Woods, P. Batterham, C. Cobbett, C. Sinclair. Translational asymmetry as a sensitive indicator of cadmium stress in plants: a laboratory test with wild-type and mutant Arabidopsis thaliana. New Phytologist 159:471-477. 2003.
    Van der Zaal, B.J., L. W. N euteboom, J .E. Pinas, A. N. Chardonnens, H. Schat, J. A. C. Verkleij, P. J. J. Hooykaas. Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiology 119: 1047-1056. 1999.
    Vatamaniuk, O. K., S. Mari, Y. P. Lu, P. A. Rea. AtPCS1, a phytochelatin synthase from Arabidopsis: Isolation and in vitro reconstitution. Proceeding of the National Academic Science USA 96: 7110-7115. 1999.
    Vaughan, D. A., The genus Oryza L. Current status of taxonomy. IRRI Research Paper Series 138:1-12. 1989.
    Vaughan, D. N., H. Morishima, K. Kasowaki. Diversity in the Oryza genus. Current opinion in Plant Biology 6: 139-146. 2003.
    Vekemans, X., C. Lefebvre. On the evolution of heavy-metal tolerant populations on Armeria maritima: evidence from allozyme variation and reproductive barriers. Journal of Evolutionary Biology 10:175-191. 1997.
    Vogeli-Lange, R., G. J. Wagner. Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves: implication of a transport function for cadmium-binding peptides. Plant Physiology 92: 1086-1093. 1990.
    Wendel, J. F. Genome evolution in polyploids. Plant Molecular Biology. 42: 225-249. 2000.
    Wilson, L. M., S. R. Whitt, A. M. Ibanez, T. R. Rocheford, M .M. Goodman et al., Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell 16: 2719-2733. 2004.
    Wolfe, K. H., W. H. Li, P. M. Sharp. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast and nuclear DNAs. Proceedings of the National Academy of Sciences, USA 84: 9054-9058. 1987.
    Wright, S. Isolation by distance. Genetics 28:114-138. 1943.
    Wu, W. L., B. A. Schaal, C. Y. Hwang, M. D. Hwang, Y. C. Chiang, T.Y. Chiang. Characterization and adaptive evolution of -tubulin genes in the Miscanthus sinensis complex (Poaceae). American Journal of Botany 90: 1513-1521. 2003.
    Xiong, L. Z., C. G. Xu, M. A. Saghai Maroof, Q. Zhang. Patterns of cytosine methylation in elite rice hybride and its parental lines, detected by a methylation-sensitive amplification polymorphism technique. Molecular and General Genetics 261: 439-446. 1999.
    Yang, J., J. Huang, H. Gu, Y. Zhong, and Z. Yang. Duplication and adaptive
    evolution of the chalcone synthase genes of Deandranthema (Asteraceae).
    Molecular biology and evolution 19:1752-1759. 2002.
    Yang, W. Y., K. N. Lai, P. Y. Tai, W. H. Li. Rates of nucleotide substitution in angiosperm mitochondrial DNA sequences and dates of divergence between Brassica and other angiosperm lineages. Journal of Molecular Evolution 48: 597-604. 1999.
    Yang, X.E., X. F. Jin, Y. Feng, E. Islam Molecular mechanism and genetic basis of heavy metal tolerance/ hyperaccumulation in plants. Journal of Integrative Plant Biology 47:1025-1035. 2005.
    Yang, Z., W. J. Swanson and V. D. Vacquier. Maximum-likelihood analysis of molecular adaptation in abalone sperm lysin reveals variable selective pressures among lineages and sites. Molecular Biology and Evolution 17:1446-1455. 2000.
    Zenk, M. H. Heavy metal detoxification in higher plants: a review. Gene 179: 21-30. 1996.
    Zhang, L., B. S. Gaut, T. J. Vision. Gene duplication and evolution. Science
    293: 1551. 2001.
    Zhang, L., A. S. Peek, d. Dunams, B. S. Gaut. Population genetics of duplicated disease-defense genes, hm1 and hm2, in maize (Zea mays ssp. mays L.) and its wild ancestor (Zea mays ssp. parviglumis). Genetics 162:851-860. 2002.
    Zhu, Y., E. A. H. Pilon-Smits, L. Jouanin, N. Terry. Overexpression of glutathione synthetase in Brassica juncea enhances cadmium tolerance and accumulation. Plant Physiology 119:73-79. 1999.
    Zhu, Q., X. Zheng, J. Luo, B. S. Gaut, S. Ge. Multilocus analysis of nucleotide variation of Oryza sativa and its wild relatives: severe bottleneck during domestication of rice. Molecular Biology and Evolution 24: 875-888. 2006.
    Zhuckerkandl, E., L. Pouling. 1965. Evolutionary divergence and convergence in protein. In Evolving genes and protein. Edited by Bryson, V. and H. J. Vogel, Academic Press, New York.

    下載圖示 校內:2013-08-10公開
    校外:2013-08-10公開
    QR CODE