簡易檢索 / 詳目顯示

研究生: 戴豪君
Tai, Hao-Chun
論文名稱: 深層岩體熱力-水力-力學偶合行為之初步研究
Coupled Analysis of Thermo-Hydro-Mechanical Behavior in Deep Rocks
指導教授: 陳昭旭
Chen, Chao-Hsu
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 158
中文關鍵詞: 熱力-水力-力學偶合FLAC3DTOUGH2
外文關鍵詞: TOUGH2, FLAC3D, thermo-hydro-mechanical(THM)
相關次數: 點閱:61下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    為了解深層岩體受高溫作用後,其溫度改變所產生之熱效應,對於深層岩體各種力學性質與水文性質之影響,本研究將利用FLAC3D與TOUGH2兩套數值分析軟體,模擬核廢料之深層處置,並探討熱力-水力-力學偶合(Coupled Thermo-Hydro-Mechanical)行為,研究分析在核廢料處置5年、10年、50年及100年等階段之岩體溫度分佈情形,並且在熱效應之影響下,分析其岩體應力分佈、位移趨勢及飽和岩體之水流向,以了解實際深層岩體之熱力-水力-力學偶合行為。
    經過研究模擬及分析後,在溫度分佈中發現,經過偶合模擬之岩體溫度有向上擴張之趨勢,使處置坑道之上部岩體溫度高於下部岩體,其與孔隙岩體熱對流效應有關,與未經過偶合模擬之處置岩體,溫度等量向外擴張之熱傳導形式不同。並且發現,處置歷時100年之不同距離岩體溫度,與核廢料相同有熱衰減之現象,其熱效應影響距離約在400公尺內,且愈向外則影響範圍愈小。而在岩體之應力變化中發現,處置5年、10年溫度上升階段與處置50年、100年溫度下降階段之張應力與壓應力分佈大不相同。另外在處置岩體之水流向中發現,孔隙岩體的水流也有向上之趨勢,因此可知其孔隙岩層之熱對流現象主導水流方向以及溫度分佈,並且間接影響岩體之應力分佈。
    關鍵字:熱力-水力-力學偶合、FLAC3D、TOUGH2

    Abstract

    The disposal of spent nuclear fuel produced high temperature which effected the properties of deep rocks with thermomechanical and hydromechanical interactions. In this study, it used two computer codes of TOUGH2 and FLAC3D were linked and executed for coupled analysis of thermo-hydro-mechanical(THM) behaviors in deep rocks. The analysis was simulated disposal of unclear waste which produced heat to effect the temperature spread, stress distribution, displacement of rocks and direction of fluid flow for 5, 10, 50 and 100 years after deposition in porous media.
    In this study, the coupled model of THM is used to simulate the temperature field. We can find that, the temperature of above rocks is higher than below ones. Because heat transfer in porous media is convection not conduction, it is different with simulation by uncoupled. The results show the disposal of unclear waste after 100 years that heat transport effect within about 400m in rocks. The compressive and tensile stresses of rocks disposes are not the same ,when the temperature rises after 5 and 10 years as well as temperature drops after 50 and 100 years. Water flow has convected upward in porous media and has indirect related to water flow and the temperature spread.

    Keywords:thermo-hydro-mechanical(THM), FLAC3D, TOUGH2

    目 錄 摘要........................................I 英文摘要....................................II 致謝........................................III 目錄........................................IV 表目錄......................................VIII 圖目錄......................................IX 符號定義....................................XIV 第一章 緒論.................................1 1.1 研究動機................................1 1.2 研究目的................................2 1.3 研究內容................................3 第二章 文獻回顧.............................6 2.1 岩石之熱力-力學(TM)行為.................6 2.2 岩層之熱力-水力(TH)行為.................16 2.3 岩體之熱力-水力-力學(THM)行為...........18 2.4 小結....................................26 第三章 相關理論.............................27 3.1 熱傳理論................................27 3.1.1 熱傳導理論...........................27 3.1.2 熱對流理論...........................31 3.2 流體傳輸理論............................34 3.3 有限差分法(FDM)之熱傳導理論.............35 3.3.1 以微分方程式推導.....................36 3.3.2 以能量平衡推導.......................37 3.3.3 能量方程式微分推導...................39 3.4 小結...................................42 第四章 數值分析方法.........................43 4.1 FLAC3D之分析模式........................43 4.1.1 FLAC3D概述...........................43 4.1.2 FLAC3D運算程序.......................47 4.1.3 FLAC3D熱傳模式特徵...................48 4.1.4 FLAC3D熱傳模式理論...................49 4.1.5 FLAC3D熱傳模式之數值方法.............53 4.1.6 FLAC3D之基本分析架構.................66 4.1.7 FLAC3D之實際分析步驟.................68 4.2 TOUGH2之分析模式........................70 4.2.1 TOUGH2概述...........................70 4.2.2 TOUGH2變數矩陣結構...................72 4.2.3 TOUGH2模式理論.......................75 4.2.4 TOUGH2模式之數值方法.................78 4.2.5 TOUGH2分析架構.......................81 4.3 TOUGH2與FLAC3D之偶合....................82 4.3.1 TOUGH2與FLAC3D之偶合方法.............82 4.3.2 TOUGH2與FLAC3D之偶合關係式...........85 4.4 小結....................................88 第五章 案例模擬與結果分析...................89 5.1 模擬分析之假設..........................89 5.1.1 模型之橫斷面與尺寸...................89 5.1.2 模型之邊界設定.......................91 5.1.3 模型之初始條件.......................97 5.1.4 模擬之材料參數.......................102 5.2 模擬案例形式............................104 5.2.1 不同距離熱源之溫度觀測...............105 5.2.2 岩體之應力分佈.......................106 5.2.3 岩體之位移趨勢.......................106 5.2.4 飽和岩層之水流向.....................106 5.3 結果與討論..............................106 5.3.1 溫度分佈.............................107 5.3.2 應力分佈.............................127 5.3.3 位移趨勢.............................140 5.3.4 水流方向.............................144 第六章 結論與建議...........................150 6.1 結論....................................150 6.2 建議....................................153 參考文獻....................................154

    參考文獻

    1. 林宏明,石英砂岩與大理石的力學特性及組成律之研究,成功大學土木工程研究所碩士論文,1992。
    2. 林擎天,多孔介質之三維彈性理論解析,中華工學院土木工程研究所碩士論文,1994。
    3. 王文盛、郭文振,熱傳遞學(上),乾泰出版社,1978。
    4. 王俊明,高溫下脆性岩石之力學與物理性質,國立交通大學土木工程研究所碩士論文,1995。
    5. 周業泗,飽和即未飽和地層傳輸行為之研究-以嘉義白水湖、蘭嶼貯存場為例,國立成功大學資源工程研究所碩士論文,1999。
    6. 高世鍊,開挖中隧道變形行為之初步研究,國立成功大學土木工程研究所碩士論文,1998。
    7. 陳冠志,異質性土壤中二相流及溶質傳輸行為之研究,國立成功大學資源工程研究所碩士論文,2000。
    8. 劉台生,TOUGH2簡易使用手冊,工業技術研究院能源與資源研究所,2001。
    9. 賴成銑,洪浩源,我國用過核燃料長程處置潛在母岩特性調查與評估階段-發展初步功能/安全評估模式(第一年計畫)-地質圈評估技術,核能研究所,2002。
    10. 鍾柏仁,核廢料深層處置進場岩石熱力學行為初步研究,國立成功大學資源工程研究所碩士論文,2001。
    11. 鄺寶山、王文禮 FLAC程式於隧道工程之實例分析,地工技術,第41期,pp. 50-61,1993。
    12. 薛禹群,地下水動力學原理,地質出版社,1992。
    13. Aversa, S. and Evangelista, A., Thermal Expansion of Neapolitan Yellow Tuff. Rock Mech. & Rock Eng., Vol. 26, No. 4, pp.281-306, 1993.
    14. Bauer, S.J. and Johnson, B., Effects of Slow Uniform Heating on the Physical Properties of the Westerly and Charcoal Granites. Proc. 20th Symp. on Rock Mech., Austin, Texas, ASCE, pp.7-18, 1979.
    15. Bejan, A., Lage, J.L., Heat transfer from a surface covered with hair.Convective Heat and Mass Transfer in Porous Media(eds. Kakac, S., Kilkis, B., Kulacki, F.A., Arinc., F.), Kluwer Academic, Dordrecht, pp.823-845, 1991.
    16. Crank, J., The Mathematics of Diffusion: 2nd Edition, Oxford: Clarendon Press, 1975.
    17. Chijimatsu, M., Fujita, T., Sugita, Y., Amemiya, K., Kobyashi, A., Field experiment, results and THM behavior in the Kamaishi mine experiment. International Journal of Rock Mechanics and Mining Sciences, Vol. 38, pp.67-78, 2001.
    18. Faust, C.R., and Mercer, J.W., Summary of Our Research in Geothermal Reservoir Simulation, Proc. Workshop on Geothermal Reservior Engineering, Stanford University, Stanford, CA, SGP-TR-12, 1975.
    19. Félix, B., Lebon, P., Miguez, R. and Plas, F., A review of the ANDRA’s research programmes on the thermo-hydromechanical behavior of clay in connection with the radioactive waste disposal project in deep geological formations. Engineering Geology, Vol. 41, pp.35-50, 1996.
    20. Hanley, E.J., Dewitt, D.P. and Roy, R.F., The Thermal Diffusivity of Eight Well-Characterized Tocks for the Temperature Range 300-1000°K. Engineering Geology, Vol. 122, pp.31-47, 1978.
    21. Hoek, E. and Brown, E.T., Empirical Strength Criterion for Rock Masses. J. of the Geotechnical Engineering, ASCE, Vol. 106, NO. GT9, pp.1013-1035, 1980.
    22. Heuze, F.E., High Temperature Mechanical, Physical and Thermal Properties off Granitic Rock-A Review. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 20, No. 1, pp.3-10, 1983.
    23. Itasca Consulting Group, Inc., Fast Lagrangian Analysis of Continua in 3 Dimensions User's Manual. Minneapolis, Minnesota, U.S.A., 1994.
    24. Jumikis, A.R., Rock Mechanics. 2nd Edition, Trans. Tech. Pubns., Germany, 1983.
    25. KBS, Final Storage of Spent Nuclear Fuel—KBS-3. Swedish Nuclear Fuel Supply Co./Division KBS, Stockholm, Sweden, 1983.
    26. Nield, D.A., Bejan, A., Convection in porous media, Springer-Verlag, 1992.
    27. Özisik, M.N., Heat Conduction. 2nd Edition, John Wiley & Sons Inc., N.Y., 1993.
    28. Onofrei, C., Gray, M., Modelling hygro-thermo-mechanical behaviour ofengineered clay barriers–Validation phase. Engineering Geology, Vol. 41, pp.301-318, 1996.
    29. Pritchett, J.W., Numerical Calculation of Multiphase Fluid and Heat Flow in Hydrothermal Reservoirs, Proc. Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, pp.201-205,SGP-TR-12, 1975.
    30. Pruess, K., Zerazn., J.M. Schroeder., R. C. Witherspoon., Descripition of the Three Dimensional Two-Phase Simulator SHAFT78 for Use in Geothermal Reservoir Studies, paper SEP 7699, presented at the Fifth SPE Symposium on Reservoir Simulation, Denver, CO, February 1979.
    31. Pruess, K., and Schroeder., R.C., SHAFT 79 User’s Manual, Lawrence Berkeley Laboratory Report LBL-10861, Berkeley, CA, March 1980.
    32. Pruess, K., Oldenburg, C., Moridis, G., TOUGH2 User’s Guide, Version 2.0. Earth Sciences Division, Lawrence Berkeley National Laboratory, 1999.
    33. Pusch, R., and Touret, O., Heat effects on soft Na bentonite gels. Geologiska Föreningens i Stockholm Förhandlinga, 110(2), PP.183-190, 1988.
    34. Pusch, R., and Borgesson, L., PASS-Project on Alternative Systems Study. Performance Assessment of Bentonite Clay Barrier in Three Repository Concepts: VDH, KBS-3 and VLH, SKB, TR 92-40, Stockholm, Sweden, 1992.
    35. Rutqvist, J., Börgesson, L., Chijimatsu, M., Nguyen, T.S., Jing, L., Noorishad, J., Tsang, C.-F., Coupled thermo-hydro-mechanical analysis of aheater test in fractured rock and bentonite at Kamaishi Mine–comparison of field results to predictions of four finite element codes. International Journal of Rock Mechanics and Mining Sciences, Vol. 38, pp.129-142, 2001.
    36. Rutqvist, J., Wu, Y.-S., Tssng, C.-F. and Bodvarsson, G., A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock. International Journal of Rock Mechanics and Mining Sciences, Vol. 39, pp.429-442, 2002.
    37. Scheidegger, A.E., The Physics of Flow through Porous Media, University of Toronto Press, Toronto, 1974.
    38. Thunvik, R. and Braester, C., Heat Propagation from a Radioactive Waste Repository. SKB TR 91-61, Stockholm, 1991.
    39. Tsang, C.-F., Stephansson, O., and Hudson, J.A., A discussion of thermo-hydro-mechanical(THM)processes associated with nuclear waste repositories. International Journal of Rock Mechanics and Mining Sciences, Vol. 37, pp.397-402, 2000.
    40. Wai, R.S.C., Lo, K.Y. and Rowe, R.K., Thermal Stress Analysis in Tock with Nonlinear Properties. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. Vol. 19, pp.211-220, 1982.

    下載圖示 校內:立即公開
    校外:2003-08-18公開
    QR CODE