簡易檢索 / 詳目顯示

研究生: 周思芸
Chou, Ssu-Yun
論文名稱: 手機版遊戲是電競運動新支柱嗎?以心流與 clutch 探討玩家的行為意圖
Is Mobile Gaming a New Pillar of Esports? Using Flow and Clutch States to Measure Player Behavioral Intention
指導教授: 馬上鈞
Ma, Shang-Chun
學位類別: 碩士
Master
系所名稱: 管理學院 - 體育健康與休閒研究所
Institute of Physical Education, Health & Leisure Studies
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 72
中文關鍵詞: 心流clutch英雄聯盟電競玩家意圖
外文關鍵詞: Flow, clutch, League of Legend, esports’ player intention
相關次數: 點閱:156下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 最著名的電競遊戲之一,英雄聯盟,在 2020 年底發行了它的手機遊戲版本。
    為了瞭解電競玩家的經驗,心流是最常被電競研究者探討的概念之一。然而,研究發現在心流的量表裡含有另一個名為”clutch”的概念。首先,本研究旨在探討英雄聯盟和他的最新手機版本,英雄聯盟:激鬥峽谷,玩家可能會產生的兩個心理狀態,心流和 clutch;此外,深入探討玩家打遊戲的等級、頻率及時間是否調節其心理狀態和購買遊戲造型意圖之間的關係,並比較上述關係在桌機與手機使用時是否不同。本研究透過網路蒐集了 930 份有效問卷,資料以結構方程模式及多元迴歸統計方法,使用 Amos 25.0 及 SPSS PROCESS (Model3)進行分析。結果發現,第一,玩家在電腦英雄聯盟產生 flow 時有較高的購買造型意圖,在手遊激鬥峽谷則是產生 clutch 時有較高的購買造型意圖。第二,不論在電腦還是手機的模型,打遊戲頻率和期間在心理狀態與購買造型意圖關係中都具有顯著調節效果。最後,加入等級第二層調節時,只有在手機模型中發現在高等級玩家組別,期間對心理狀態與購買造型意圖關係具有調節效果。期望結果能進一步了解在何種心理狀態、打遊戲頻率、每次打多久和玩家等級,能夠增進玩家消費意圖,並提供電競市場更精準的行銷參考。

    One of the most widely played esports, League of Legends (LOL), published a whole new version for mobile devices in 2020. To understand players’ gaming experience, the concept of flow is the most commonly measured in the study of esports. However, along with measurement of flow, the ‘‘clutch’’ concept, which is at the
    opposite end of the spectrum, has attracted scholars’ attention but has hardly been empirically examined. This study aims to discover players’ flow and clutch states in LOL and its latest mobile version, League of Legends: Wild Rift (LOLWR). The second purpose is to explore the moderating roles of players’ level, frequency, duration, and different devices (i.e., computers and mobile phones) in the relationships between psychological states and player intentions (i.e., purchasing virtual items). This study collected 930 valid online esponses, and the data were analyzed with confirmatory factor analysis and multiple regression via the AMOS 25.0 and PROCESS macro (Model3). The results showed that LOL players had higher purchasing intentions during flow state, and LOLWR players had higher purchasing intentions during clutch state.
    Second, playing frequency and duration had significant effects by moderating the relationships between psychological states and purchasing intentions in both the PC and mobile models. Last, it only showed a significant effect on high-level players when playing duration moderated the relationships between psychological states and purchasing intentions in the mobile model. The results can offer a better understanding of how the relationships between game players’ psychological states and purchasing intentions are dependent on playing frequency, playing duration, and playing evels.
    Findings can offer useful implications for precise marketing trategies.

    Chapter One Introduction ..............................................................................................1 Chapter Two Literature Review.....................................................................................4 2.1 Background of eSports.....................................................................................4 2.2 League of Legends (LOL) ...............................................................................5 2.3.Flow/Clutch state .............................................................................................7 2.4 Players’ intention of purchasing skins ...........................................................15 2.5 Frequency, duration, and skill level ...............................................................16 2.6 Different technical device ..............................................................................19 Chapter Three Method .................................................................................................23 3.1 Participants and data collection .....................................................................23 3.2 Survey development and measurement .........................................................23 3.3 Data analysis..................................................................................................25 Chapter Four Results....................................................................................................26 4.1. Descriptive analysis......................................................................................26 4.2 Measurement model.......................................................................................26 4.3 Results of the hypothesis testing and moderating effects..............................31 4.4 Explanations for the results ..........................................................................36 Chapter Five Discussion and Conclusion ....................................................................40 5.1 Discussion......................................................................................................40 5.2 Practical implications.....................................................................................42 5.3 Limitations and future study suggestions ......................................................45 References....................................................................................................................47 Appendix - Questionnaire ............................................................................................62

    Abbasi, A. Z., Ting, D. H., Hlavacs, H., Costa, L. V., & Veloso, A. I. (2019). An empirical validation of consumer video game engagement: A playful-consumption experience approach. Entertainment Computing, 29, 43-55. https://doi.org/10.1016/j.entcom.2018.12.002
    Ampant, U., Santiworarak, L., & Inchamnan, W. (2017, July 17- 21). A survey of behavior interactive during online gameplay: skills, duration, and money spent. [Conference presentation]. 2017 International Symposium on the Fusion of Science and Technologies, Jeju, S, Korea. http://www.rdi.rmutsb.ac.th/2011/digipro/isft2017/SC/6.%5BSC001%5D_F.pdf
    Anunpattana, P., Khalid, M. N. A., Yusof, U. K., & Lida, H. (2018). Analysis of realm of valor and its business model on PC and Mobile platform comparison. Asia-Pacific Journal of Information Technology and Multimedia, 7(2), 1–11. https://www.researchgate.net/profile/Hiroyuki-Iida-4/publication/330184716_Analysis_of_Realm_of_Valor_and_Its_Business_Model_on_PC_and_Mobile_Platform_Comparison/links/5c32cefe458515a4c712b8ad/Analysis-of-Realm-of-Valor-and-Its-Business-Model-on-PC-and-Mobile-Platform-Comparison.pdf
    Atalay, A., & Topuz, A.C. (2018). What is being played in the world? Mobile eSport applications. Universal Journal of Educational Research, 6 (6), 1243–1251. https://dx.doi.org/10.13189/ujer.2018.060615
    Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74-94. https://doi.org/10.1007/BF02723327
    Brühlmann, F., Baumgartner, P., Wallner, G., Kriglstein, S., & Mekler, E. D. (2020). Motivational Profiling of League of Legends Players. Frontiers in Psychology, 11, 1307. https://doi.org/10.3389/fpsyg.2020.01307
    Bollen, K. A., & Stine, R. A. (1992). Bootstrapping goodness-of-fit measures in structural equation models. Sociological Methods & Research, 21(2), 205-229. https://doi.org/10.1177/0049124192021002004
    Byrne, B. M. (2004). Testing for multigroup invariance using AMOS graphics: A road less traveled. Structural Equation Modeling, 11(2), 272-300. https://doi.org/10.1207/s15328007sem1102_8
    Catalán, S., Martínez, E., & Wallace, E. (2019). The role of flow for mobile advergaming effectiveness. Online Information Review. 43 (7), 1228–1244. https://doi.org/10.1108/OIR-06-2018-0198
    Cheung, C. M., Shen, X. L., Lee, Z. W., & Chan, T. K. (2015). Promoting sales of online games through customer engagement. Electronic Commerce Research and Applications, 14(4), 241-250. https://doi.org/10.1016/j.elerap.2015.03.001
    Chou, T. J., & Ting, C. C. (2003). The role of flow experience in cyber-game addiction. CyberPsychology & Behavior, 6(6), 663-675. https://doi.org/10.1089/109493103322725469
    Csikszentmihalyi, M. (1997). Finding flow, Basic Books.
    Csikszentmihalyi, M., & Csikszentmihalyi, I. (1975). Beyond boredom and anxiety, Jossey-Bass.
    Csikszentmihalyi, M., & Csikzentmihaly, M. (1990). Flow: The psychology of optimal experience, Harper & Row.
    Csikszentmihalyi, M., & Larson, R. (2014). Flow and the foundations of positive psychology, Springer.
    Dehaene, S., & Marques, J. F. (2002). Cognitive euroscience: Scalar variability in price estimation and the cognitive consequences of switching to the euro. The Quarterly Journal of Experimental Psychology Section A, 55(3), 705-731. https://doi.org/10.1080/02724980244000044
    Ellis, G. D., Voelkl, J. E., & Morris, C. (1994). Measurement and analysis issues with explanation of variance in daily experience using the flow model. Journal of Leisure Research, 26(4), 337-356. https://doi.org/10.1080/00222216.1994.11969966
    Forbes, B. (2020). Welcome to regional open beta. Riot. https://wildrift.leagueoflegends.com/en-us/news/game-updates/welcome-to-regional-open-beta/
    Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics. Journal of Marketing Research, 18(3), 382-388. https://doi.org/10.1177/002224378101800313
    Ghani, J. A., & Deshpande, S. P. (1994). Task characteristics and the experience of optimal flow in human—computer interaction. The Journal of Psychology, 128(4), 381-391. https://doi.org/10.1080/00223980.1994.9712742
    Gong, D., Yao, Y., Gan, X., Peng, Y., Ma, W., & Yao, D. (2019). A reduction in video gaming time produced a decrease in brain activity. Frontiers in Human Neuroscience, 13, 134. https://doi.org/10.3389/fnhum.2019.00134
    Gómez-Gonzalvo, F., Molina, P., & Devís-Devís, J. (2020). Which are the patterns of video game use in Spanish school adolescents? Gender as a key factor. Entertainment Computing, 34, 100366. https://doi.org/10.3389/fnhum.2019.00134
    Hamari, J. (2015). Why do people buy virtual goods? Attitude toward virtual good purchases versus game enjoyment. International Journal of Information Management, 35(3), 299-308. https://doi.org/10.1016/j.ijinfomgt.2015.01.007
    Hamari, J. & Sjöblom, M. (2017). What is a eSport and why do people watch it? Internet Research, 27 (2), 211-232. https://doi.org/10.1108/IntR-04-2016-0085
    Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Advanced diagnostics for multiple regression: A supplement to multivariate data analysis. Advanced Diagnostics for Multiple Regression: A Supplement to Multivariate Data Analysis.
    Haralayya, B. (2021). Study on Customer Perceptions Guru Basava Motors, Bidar. Iconic Research and Engineering Journals, 4(12), 223-231. https://irejournals.com/formatedpaper/17027972.pdf
    Harmat, L., Ö. de Manzano, Theorell, T., Högman, L., Fischer, H. & Ullén, F. (2015) Physiological correlates of the flow experience during computer game playing, International Journal of Psychophysiology, 97 (1), 1-7. https://doi.org/10.1016/j.ijpsycho.2015.05.001
    Hayes, A. F. (2017). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. Guilford Publications.
    Hibbs, D. (2010). A conceptual analysis of clutch performances in competitive sports. Journal of the Philosophy of Sport, 37(1), 47-59. https://doi.org/10.1080/00948705.2010.9714765
    Hsu, C. L., Chang, K. C., & Chen, M. C. (2012). Flow experience and internet shopping behavior: Investigating the moderating effect of consumer characteristics. Systems Research and Behavioral Science, 29(3), 317-332. https://doi.org/10.1002/sres.1101
    Hsu, C. L., & Lu, H. P. (2004). Why do people play on-line games? An extended TAM with social influences and flow experience. Information & Management, 41(7), 853-868. https://doi.org/10.1016/j.im.2003.08.014
    Hsiao, K. L., & Chen, C. C. (2016). What drives in-app purchase intention for mobile games? An examination of perceived values and loyalty. Electronic Commerce Research and Applications, 16, 18-29. https://doi.org/10.1016/j.elerap.2016.01.001
    Jackson, S. A. (1992). Athletes in flow: A qualitative investigation of flow states in elite figure skaters. Journal of Applied Sport Psychology, 4(2), 161-180. https://doi.org/10.1080/10413209208406459
    Jackson, S., & Wrigley, W. (2004). Optimal experience in sport: Current issues and future directions. In T. Morris & J. Summers (Eds.). Sport Psychology: Theories, Applications, and Issues 2, 423–451. https://doi.org/10.1080/10413209208406459
    Jackson, S., & Kimiecik, J. (2008). The flow perspective of optimal experience in sport and physical activity. In T. S. Horn (Ed.), Advances in sport psychology (pp. 377–399,474–477). Human Kinetics. https://psycnet.apa.org/record/2008-01583-016
    Jackman, P. C., Hawkins, R. M., Crust, L., & Swann, C. (2019). Flow states in exercise: a systematic review. Psychology of Sport and Exercise, 45, 101546. https://doi.org/10.1016/j.psychsport.2019.101546
    Jackman, P. C., Crust, L., & Swann, C. (2017). Systematically comparing methods used to study flow in sport: A longitudinal multiple-case study. Psychology of Sport and Exercise, 32, 113–123. https://doi.org/10.1016/j.psychsport.2019.101546
    Jackman, P., Crust, L., & Swann, C. (2020). The role of mental toughness in the occurrence of flow and clutch states in sport. International Journal of Sport Psychology, 51 (1), 1-27. https://doi.org/10.7352/IJSP.2020.51.001
    Jackman, P. C., Dargue, E. J., Johnston, J. P., & Hawkins, R. M. (2020). Flow in youth sport, physical activity, and physical education: A systematic review. Psychology of Sport and Exercise, 53, 101852. https://doi.org/10.1016/j.psychsport.2020.101852
    Jamshidi, D., Keshavarz, Y., Kazemi, F., & Mohammadian, M. (2018). Mobile banking behavior and flow experience. International Journal of Social Economics, 45(1), 57–81. https://doi.org/10.1108/IJSE-10-2016-0283
    Jang, W., & Byon, K. K. (2019). Antecedents and consequence associated with esports gameplay. International Journal of Sports Marketing and Sponsorship, 21(1), 1–22. https://doi.org/10.1108/IJSMS-01-2019-0013
    Jang, W., & Byon, K. K. (2020). Antecedents of esports gameplay intention: Genre as a moderator. Computers in Human Behavior, 109, 106336. https://doi.org/10.1016/j.chb.2020.106336
    Jang, W. W., Kim, K. A., & Byon, K. K. (2020). Social atmospherics, affective response, and behavioral intention associated with esports events. Frontiers in Psychology, 11, 1671. https://doi.org/10.3389/fpsyg.2020.01671
    Javed, J. (2020). ESports and gaming industry thriving as video games provide escape from reality during coronavirus pandemic. The Business Journals. https://www.bizjournals.com/dallas/news/2020/03/28/esports-gaming-industry-coronavirus.html.
    Jenny, S. E., Manning, R. D., Keiper, M. C., & Olrich, T. W. (2017). Virtual (ly) athletes: where eSports fit within the definition of “Sport”. Quest, 69(1), 1-18. https://doi.org/10.1080/00336297.2016.1144517
    Johnson, C. D., Bauer, B. C., & Singh, N. (2020). Exploring flow in the mobile interface context. Journal of Retailing and Consumer Services, 53, 101744. https://doi.org/10.1016/j.jretconser.2019.01.013
    Jonquière. (2020) Investigating the role of esport on the free to play bussiness model: an analysis of league of legends economic success [Unpublished doctoral dissertation]. ISCTE-IUL Business School. http://hdl.handle.net/10071/20782
    Jöreskog, K. G., & Sörbom, D. (1996). LISREL 8: User's reference guide. Scientific Software International.
    Kang, K., Lu, J., Guo, L., & Zhao, J. (2020). How to Improve Customer Engagement: A Comparison of Playing Games on Personal Computers and on Mobile Phones. Journal of Theoretical and Applied Electronic Commerce Research, 15(2), 76-92. https://doi.org/10.4067/S0718-18762020000200106
    Kaimann, D., Stroh‐Maraun, N., & Cox, J. (2018). A duration model analysis of consumer preferences and determinants of video game consumption. Journal of Consumer Behaviour, 17(3), 290-301. https://doi.org/10.1002/cb.1711
    Karavolos, D., Liapis, A., & Yannakakis, G. N. (2018, August). Using a surrogate model of gameplay for automated level design. In 2018 IEEE Conference on Computational Intelligence and Games (CIG) (pp. 1-8). IEEE. https://doi.org/10.1109/CIG.2018.8490425
    Kiili, K., & Lainema, T. (2008). Foundation for measuring engagement in educational games. Journal of Interactive Learning Research, 19(3), 469-488. https://www.learntechlib.org/primary/p/24197/.
    Kiili, K., De Freitas, S., Arnab, S., & Lainema, T. (2012). The design principles for flow experience in educational games. Procedia Computer Science, 15, 78-91. https://doi.org/10.1016/j.procs.2012.10.060
    Kim, J., & Kim, M. (2020). Spectator e-sport and well-being through live streaming services. Technology in Society, 63, 101401. https://doi.org/10.1016/j.techsoc.2020.101401
    Koufaris, M. (2002). Applying the technology acceptance model and flow theory to online consumer behavior. Information Systems Research, 13(2), 205-223. https://doi.org/10.1287/isre.13.2.205.83
    Kwak, D. H., McDaniel, S., & Kim, K. T. (2012). Revisiting the satisfaction-loyalty relationship in the sport video gaming context: The mediating role of consumer expertise. Journal of Sport Management, 26(1), 81-91. https://doi.org/10.1123/jsm.26.1.81
    Laghari, A. A., Memon, K. A., Soomro, M. B., Laghari, R. A., & Kumar, V. (2020). Quality of experience (QoE) assessment of games on workstations and mobile. Entertainment Computing, 34, 100362. https://doi.org/10.1016/j.entcom.2020.100362
    Larsen, L. J. (2020). The play of champions: Toward a theory of skill in eSport. Sport, Ethics and Philosophy, 1-23. https://doi.org/10.1080/17511321.2020.1827453
    Lehdonvirta, V. (2009). Virtual item sales as a revenue model: identifying attributes that drive purchase decisions. Electronic Commerce Research, 9(1), 97-113. https://doi.org/10.1007/s10660-009-9028-2
    Lee, M. C., & Tsai, T. R. (2010). What drives people to continue to play online games? An extension of technology model and theory of planned behavior. International. Journal of Human–Computer Interaction, 26(6), 601-620. https://doi.org/10.1080/10447311003781318
    Liao, G. Y., Cheng, T. C. E., & Teng, C. I. (2019). How do avatar attractiveness and customization impact online gamers’ flow and loyalty? Internet Research. 29(2), 349–366. https://doi.org/10.1108/IntR-11-2017-0463
    Lin, H., & Sun, C. T. (2011). Cash trade in free-to-play online games. Games and Culture, 6(3), 270-287. https://doi.org/10.1177/1555412010364981
    Ma, Y., Williams, D., & Prejean, L. (2014). Designing an electronic educational game to facilitate immersion and flow. Journal of Interactive Learning Research, 25(1), 27-49. https://www.learntechlib.org/primary/p/36121/.
    Macey, J., & Hamari, J. (2018). Investigating relationships between video gaming, spectating esports, and gambling. Computers in Human Behavior, 80, 344-353. https://doi.org/10.1016/j.chb.2017.11.027
    Mahnke, R., Benlian, A., & Hess, T. (2014, December 14-17). Flow experience in information systems research: Revisiting its conceptualization, conditions, and effects. [Conference presentation]. Thirty Fifth International Conference on Information Systems. Auckland, New Zealand. https://www.researchgate.net/profile/Rolf-Mahnke/publication/273042558_Flow_Experience_in_Information_Systems_Research_Revisiting_its_Conceptualization_Conditions_and_Effects/links/54f5939d0cf2ba615066ad08/Flow-Experience-in-Information-Systems-Research-Revisiting-its-Conceptualization-Conditions-and-Effects.pdf
    Mao, E. (2021). The structural characteristics of esports gaming and their behavioral implications for high engagement: A competition perspective and a cross-cultural examination. Addictive Behaviors, 123, 107056. https://doi.org/10.1016/j.addbeh.2021.107056
    Mastromartino, B., Ross, W. J., Wear, H., & Naraine, M. L. (2020). Thinking outside the ‘box’: A discussion of sports fans, teams, and the environment in the context of COVID-19. Sport in Society, 23(11), 1707-1723. https://doi.org/10.1080/17430437.2020.1804108
    Niu, H. J., & Chang, C. T. (2014). Addiction in cyberspace: flow experience on e-shopping. International Journal of Web Based Communities, 10(1), 52-68. https://doi.org/10.1504/IJWBC.2014.058386
    Novak, T. P., Hoffman, D. L., & Yung, Y. F. (2000). Measuring the customer experience in online environments: A structural modeling approach. Marketing Science, 19(1), 22-42. https://doi.org/10.1287/mksc.19.1.22.15184
    Ozkara, B. Y., Ozmen, M., & Kim, J. W. (2017). Examining the effect of flow experience on online purchase: A novel approach to the flow theory based on hedonic and utilitarian value. Journal of Retailing and Consumer Services, 37, 119-131. https://doi.org/10.1016/j.jretconser.2017.04.001
    Pates, J. (2021). Clutch-Based Hypnotic Intervention to Improve Golf Performance: A Case Study. International Journal of Clinical and Experimental Hypnosis, 69(2), 246-252. https://doi.org/10.1080/00207144.2021.1839901
    Park, J. H., Kang, S. Y., Lee, S. G., & Jeon, H. S. (2017). The effects of smart phone gaming duration on muscle activation and spinal posture: Pilot study. Physiotherapy Theory and Practice, 33(8), 661-669. https://doi.org/10.1080/09593985.2017.1328716
    Perttula, A., Kiili, K., Lindstedt, A., & Tuomi, P. (2017). Flow experience in game based learning–a systematic literature review. [Unpublished master’s thesis]. Tampere University of Technology. https://doi.org/10.17083/ijsg.v4i1.151
    Plunkett, L. (2014). Riot broke League of Legends, and fans love it. Kotaku. https://kotaku.com/riot-broke-league-of-legends-and-fans-love-it-1557292936
    Procci, K., Singer, A. R., Levy, K. R., & Bowers, C. (2012). Measuring the flow experience of gamers: An evaluation of the DFS-2. Computers in Human Behavior, 28(6), 2306-2312. https://doi.org/10.1016/j.chb.2012.06.039
    Rafdinal, W., Qisthi, A., & Asrilsyak, S. (2020). Mobile Game Adoption Model: Integrating Technology Acceptance Model and Game Features. Sriwijaya International Journal of Dynamic Economics and Business, 4(1), 43-56. https://doi.org/10.29259/sijdeb.v4i1.43-56
    Ravizza, K. (1977). Peak experiences in sport. Journal of Humanistic Psychology. 17(4), 35–40. https://doi.org/10.1177/002216787701700404
    Schmidt, S. C., Gnam, J. P., Kopf, M., Rathgeber, T., & Woll, A. (2020). The influence of cortisol, flow, and anxiety on performance in E-sports: A field study. BioMed Research International, 2020. https://doi.org/10.1155/2020/9651245
    Schweickle, M. J., Swann, C., Jackman, P. C., & Vella, S. A. (2020). Clutch performance in sport and exercise: a systematic review. International Review of Sport and Exercise Psychology, 1-28. https://doi.org/10.1080/1750984X.2020.1771747
    Schweickle, M., Groves, S., Vella, S. A., & Swann, C. (2017). The effects of open vs. specific goals on flow and clutch states in a cognitive task. Psychology of Sport and Exercise, 33, 45-54. https://doi.org/10.1016/j.psychsport.2017.08.002
    Smith, L. J., Gradisar, M., King, D. L., & Short, M. (2017). Intrinsic and extrinsic predictors of video-gaming behaviour and adolescent bedtimes: the relationship between flow states, self-perceived risk-taking, device accessibility, parental regulation of media and bedtime. Sleep Medicine, 30, 64-70. https://doi.org/10.1016/j.sleep.2016.01.009
    Solomon, M.R. (2013). Consumer behavior: Buying, having, and being (10th ed.) Upper Saddle River, Pearson Prentice Hall.
    Statista. (2019). League of Legends fanbase by type – statistical report. Statista. https://www.statista.com/statistics/692299/league-of-legends-fanbase/
    Stephen, B. (2020). This is twitch’s moment. The verge. https://www.theverge.com/2020/3/18/21185114/twitchyoutube-livestreaming-streamelements-coronavirusquarantine-viewership-numbers.
    Stubbs, M. (2019). Louis Vuitton partners with Riot games for ‘League of Legends’ world championship. Forbes. https://www.forbes.com/sites/mikestubbs/2019/09/29/louis-vuitton-partners-with-riot- games-for-league-of-legends-world-championship/#31a359c6d42e.
    Sudman, S. (1976). Applied sampling (No. 04; HN29, S8.). New York: Academic Press.
    Swann, C., Keegan, R. J., Piggott, D., & Crust, L. (2012). A systematic review of the experience, occurrence, and controllability of flow states in elite sport. Psychology of Sport and Exercise, 13(6), 807-819. https://doi.org/10.1016/j.psychsport.2012.05.006
    Swann, C., Crust, L., Jackman, P., Vella, S. A., Allen, M. S., & Keegan, R. (2017a). Performing under pressure: Exploring the psychological state underlying clutch performance in sport. Journal of Sports Sciences, 35(23), 2272-2280. https://doi.org/10.1080/02640414.2016.1265661
    Swann, C., Crust, L., Jackman, P., Vella, S. A., Allen, M. S., & Keegan, R. (2017b). Psychological states underlying excellent performance in sport: Toward an integrated model of flow and clutch states. Journal of Applied Sport Psychology, 29(4), 375-401. https://doi.org/10.1080/10413200.2016.1272650
    Swann, C., Crust, L., & Vella, S. A. (2017). New directions in the psychology of optimal performance in sport: flow and clutch states. Current Opinion in Psychology, 16, 48-53. https://doi.org/10.1016/j.copsyc.2017.03.032
    Swann, C., Keegan, R., Crust, L., & Piggott, D. (2016). Psychological states underlying excellent performance in professional golfers: “letting it happen” vs “making it happen”. Psychology of Sport and Exercise, 23, 101-113. https://doi.org/10.1016/j.psychsport.2015.10.008
    Swann, C., Piggott, D., Schweickle, M., & Vella, S. A. (2018). A review of scientific progress in flow in sport and exercise: normal science, crisis, and a progressive shift. Journal of Applied Sport Psychology, 30(3), 249-271. https://doi.org/10.1080/10413200.2018.1443525
    Swann, C., Jackman, P. C., Schweickle, M. J., & Vella, S. A. (2019). Optimal experiences in exercise: A qualitative investigation of flow and clutch states. Psychology of Sport and Exercise, 40, 87-98. https://doi.org/10.1016/j.psychsport.2018.09.007
    Swann, C., Keegan, R. J., Piggott, D., & Crust, L. (2012). A systematic review of the experience, occurrence, and controllability of flow states in elite sport. Psychology of Sport and Exercise, 13(6), 807-819. https://doi.org/10.1016/j.psychsport.2012.05.006
    Takahashi, D. (2019). Riot Games says 10-year-old League of Legends hits 8 million concurrent players daily. Games beat. https://venturebeat.com/2019/09/17/riot-games-says-10-year-old-league-of-legends-hits-8-million-concurrent-players-every-day/
    Talbot, C. (2020). League of Legends' hilarious One for All mode is back. PCGamesN. https://www.pcgamesn.com/league-of-legends/lol-one-for-all
    Törhönen, M., Sjöblom, M., Vahlo, J., & Hamari, J. (2020, January 7 - 10). View, play and pay? – The relationship between consumption of gaming video content and video game playing and buying [Conference presentation]. 2020 Hawaii International Conference on System Sciences, Hawaii, United States. https://trepo.tuni.fi/bitstream/handle/10024/120126/View_play_and_pay_2020.pdf?sequence=2
    Twlolstate. (2021) Solo Distribution. https://twlolstats.com/distribution/solo
    Otten, M. (2009). Choking vs. clutch performance: A study of sport performance under pressure. Journal of Sport and Exercise Psychology, 31(5), 583-601. https://doi.org/10.1123/jsep.31.5.583
    Perez, M. (2020). Video games are being played at record levels as the coronavirus keeps people indoors. Forbes. https://www.forbes.com/sites/mattperez/2020/03/16/video-games-are-being-played-at-record-levels-as-the-coronavirus-keeps-people-indoors/?sh=6b42497a57ba
    Vastani, S. F., & Monroe, K. B. (2019). Role of customer attributes on absolute price thresholds. Journal of Services Marketing. https://doi.org/10.1108/JSM-12-2017-0415
    Volk, P. (2016). League of legends now boasts over 100 million monthly active players worldwide. Rift herald. https://www.riftherald.com/2016/9/13/12865314/monthly-lol-players-2016-active-worldwide
    Wang, L. C., & Chen, M. P. (2010). The effects of game strategy and preference‐matching on flow experience and programming performance in game‐based learning. Innovations in Education and Teaching International, 47(1), 39-52. https://doi.org/10.1080/14703290903525838
    Wagner, M. G. (2006). On the Scientific Relevance of eSports. In International Conference on Internet Computing, 437-442. https://www.researchgate.net/profile/Michael-Wagner-36/publication/220968200_On_the_Scientific_Relevance_of_eSports/links/00b4952589870231be000000/On-the-Scientific-Relevance-of-eSports.pdf
    Webster, J., Trevino, L. K., & Ryan, L. (1993). The dimensionality and correlates of flow in human-computer interactions. Computers in Human Behavior, 9(4), 411-426. https://doi.org/10.1016/0747-5632(93)90032-N
    Webster, A. (2019). Designing League of Legends’ stunning holographic worlds opening ceremony – with a little help from the Super Bowl and Louis Vuitton. https://www.theverge.com/2019/11/11/20959206/league-of-legends-worlds-2019- opening-ceremony-holograms-holone.
    Wijman, T. (2020). Newzoo: Three Billion Players by 2023: Engagement and Revenues Continue to Thrive Across the Global Games Market. Newzoo. https://newzoo.com/insights/articles/games-market-engagement-revenues-trends-2020-2023-gaming-report/
    Xiong, S., Zuo, L., & Iida, H. (2017, September). Possible interpretations for game refinement measure. In International Conference on Entertainment Computing (pp. 322-334). Springer, Cham. https://doi.org/10.1007/978-3-319-66715-7_35
    Yee, N. (2017). Beyond 50/50: Breaking down the percentage of female gamers by genre. Quantic foundry. https://quanticfoundry.com/2017/01/19/female-gamers-by-genre/
    Zhou, T. (2013). The effect of flow experience on user adoption of mobile TV. Behaviour & Information Technology, 32(3), 263-272. https://doi.org/10.1080/0144929X.2011.650711

    無法下載圖示 校內:2026-09-01公開
    校外:2026-09-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE