簡易檢索 / 詳目顯示

研究生: 翁意宗
Weng, Yi-Tsung
論文名稱: 群青製備之擴大化研究
A Study of the Scale-Up Preparation of Ultramarine
指導教授: 雷大同
Ray, Dah-tong
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 94
中文關鍵詞: 雲母藍色群青造粒
外文關鍵詞: mica, ultramarine blue, granulation
相關次數: 點閱:78下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台東縣海端鄉利稻村西北方2公里處,賦存數量龐大的雲母礦,由絹雲母、葉蠟石、石英所組成,是台灣地區唯一自片岩中生產雲母粉之礦區,儲量推算有3000萬公噸,可開採量約為1500萬公噸,是台灣地區最具有經濟價值的工業礦物之一。雲母粉粒徑細於400號篩,礦物組成以絹雲母及葉蠟石為主,絹雲母含量約60%,葉蠟石約40%。
    本研究以雲母粉為原料,混合碳酸鈉、硫粉及活性碳,在不同容積坩堝中進行合成群青試驗。根據試驗結果可得以下結論:
    1.改變原料混合方式,對產物晶相無影響,均可短時間製備出群青。
    2.擴大試驗結果顯示,反應時間與生產量呈正比關係,有助硫離子氧化並進入青金石結構,提高色彩屬性。
    3.原料造粒後煅燒,產物色彩性質趨向穩定。
    4.原料造粒有助於生產擴大化。
    5.最佳之生產條件為1000 ml坩堝,800℃,球粒3 cm之色彩屬性為彩度37.8,明度36.3,色相267.1 o。
    6.料/空間比為92.4%,800℃,煅燒12 hr,最佳色彩屬性為38.1,明度37.1,色相265.7 o。

    A huge amount of mica deposit is located at about 2 kiloments in the northwest of Li-Dao Village, Hai-Duan Township, Taitung County. The compositions are sericite, pyrophyllite and quartz. In the R.O.C., this is the only mica mined from schists. The reserves are estimated to be 30 million tones. The recoverable amount is about 15 million tones. It is one of the valuable industrial minerals of R.O.C. The particle size of mica is finer than 400 mesh. The mineral compositions are 60% sericite and 401% pyrophyllite.
    The natural blue ultramarine is composed mainly of the mineral lazurite. Lazurite is in the isometric system, with complete cleavage at (110) surface, uneven fracture, hardness is 5 to 5.5, the density 2.38 ~ 2.45. In the flame test, it will show a strong yellow light, which is the emitted spectrum of Na+. The appearance of lazurite is blue-green crystals with rhombic dodecahedron crystals. Lazurite has the sodalite cage. The basic structure is that Si4+ and Al3+ ions forming the β cage structure. In the center, is the S3- anionic ion. The Na+ and other cations are en the lattice to maintain charge balance.
    In this study, mica powders are used as the raw material, which was mixed with sodium carbonate, sulfur powder and activated carbon to synthesize blue ultramarine. Two approaches were tested in the synthesis of ultramarine. The first is dry mixing of mica powder with proportional sodium carbonate, sulfur powder and activated carbon. After mixing, the mixture was put into an alumina crucible, with a cover. The calcination of the raw materials was executed in a high temperature furnace. The second is wet mixing of mica, sulfur and activated carbon powders with fixed volume of sodium carbonate solution. The slurry was dried at 95℃ in an oven to remove excess water. The dried block was broken into fines pieces and put in an alumina crucible with cover, then calcined with the same conditions as the dry route. Three volumes of crucibles were tested.
    The results of mixing experiments show: when the calcination time is less than1 hr, the mineral phases appeared were lazurite and minute amount nepheline. When calcination time is longer than 1 hr, the mineral phase is lazurite completely. Nepheline disappeared. It seems that the way of mixing does not affect the product phases.
    At the calcination temperature, if no holding time, sulfur cannot enter the lattice. The chroma of the products is low, about 20 to 25; the hue is blue-green. When holding time was increased to 0.5 hr, it ensured more sulfur ions diffusing into the lattice. The chroma was increased to 30 and above. The hue changed to blue, but the lightness was more than 40, making the appearance of the product to be pale blue.
    For the samples of dry mixing, the holding time must be as long as 1-10 hr to obtain chroma of 30-35. Hue changed from blue to green and again to blue. Lightness changed from 57.31 down to 38.93. The best conditions are: calcination temperature 800℃, holding time 10 hr. The chroma is 33.20, lightness 38.93 and hue 258.9 o.
    For the samples of wet mixing, the holding time can be shortened to 1-4 hr. The chroma of the products is 30-35. Hue changed from blue to green. Lightness is 36.08. When holding time is increased to longer than 4 hr, chroma increased to 37.89, hue shifted to blue, but the lightness also increased to 50 and above. The colors of the products are pale blue. The best holding time is 1 hr, the chroma of the product is 34.39, lightness 39.82 and hue 258.5 o.
    For samples of dry mixing, the holding time must be longer than 10 hrs, to obtain blue ultramarine. In the experiments of shorter holding times, the washing solution showed colors of yellow and green. It is an evidence of sulfide ions not diffusing into the structure of lazurite and making the powder appearance to be green and blue-green. For samples of wet mixing, the only case with yellow washing solution is the one of no holding time. With holding time of 1 hr, the washing solutions are colorless, that is the sulfide ions have entered into the structure of lazurite.
    The results of mixing methods show that dry mixing does not give uniform mixed state, so that the holding time have to be longer than 10 hr to get best color. While wet mixing method is effective, so that 1 hr holding time is enough to obtain the best color of ultramarine blue. Improving the mixing procedures can decrease holding time and enhance products quality.
    According to the experiment results the following conclusions can be drawn:
    1.Changing the way of raw materials mixing from dry to wet can shorten the holding time of ultramarine manufacture.
    2.The results of scale-up experiments show that the reaction time must be increased proportionally to the production scale so as to promote the oxidation of sulfide ions and diffuse into lazurite’s structure and improving the color.
    3.The granulation of raw materials before calcination improves and stabilizes the color properties of the product.
    4.Granulation of the raw materials is critical to the scale-up of production.
    5.The optimum conditions for 1000 ml crucible are: calcination temperature 800 ℃, holding time 12 hr, granule size 3 cm. The product has chroma 37.8, lightness 36.3 and hue 267.1o.
    6.For material/space ratio 92.4%, the optimum conditions are: calcination temperature 800℃, holding time 12 hr. The product has chroma 38.1, lightness 37.1 and hue 265.7o.

    摘要 I Extended Abstract II 誌謝 V 表目錄 IX 圖目錄 X 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 4 第二章 理論基礎與前人研究 5 2.1層狀矽酸鹽礦物之結晶結構 5 2.1.1 絹雲母 8 2.1.2 葉臘石 8 2.2 顏料與染料的性質 11 2.2.1 顏料的分類 13 2.2.2 顏料之特性 14 2.2.3 顏料之粒徑大小 16 2.3 顏色形成機制 17 2.4 色彩學理論 21 2.4.1 色彩屬性 21 2.4.2 CIE表色系統 22 2.5 群青 27 2.5.1 群青之結構與性質 29 2.5.2群青性質與用途 30 2.5.3 塑膠所使用的顏料種類及考慮之性質 31 2.5.4 群青之合成 34 2.5.5群青之反應機制 36 2.5.6文獻回顧 38 第三章 實驗 48 3.1 材料與設備 48 3.1.1 雲母 48 3.1.2 其他原料 50 3.1.3設備 50 3.2 原料準備 52 3.2.1 乾式混合 52 3.2.2 濕式混合 52 3.2.3 造粒 52 3.3 性質量測 55 3.3.1 X光粉末繞射 55 3.3.2場發式掃描式電子顯微鏡 55 3.3.3色度檢測 55 第四章 結果與討論 56 4.1原料混合方式對產物影響 56 4.2 擴大化試驗 60 4.2.1容積150 ml坩堝 60 4.2.2容積1000 ml坩堝 62 4.3 原料造粒 65 4.4 色彩屬性與空間比 70 第五章 結論 74 參考文獻 76 附錄A安德利森瓶(Andreasen pipette)粒徑分佈量測步驟 81 附錄B XRD分析圖型 84 附錄C 色彩屬性資料表 87

    1.陳其瑞,臺東縣向陽雲母礦成因之初步研究,經濟部中央地質調查所特刊3號,1984。
    2.魏稽生,向陽礦業專業區規劃開發計畫報告,經濟部礦務局,1995。
    3.魏稽生及譚立平,臺灣非金屬經濟礦物,經濟部中央地質調查所,1999。
    4.經濟部礦務局網站︰http://www.mine.gov.tw/
    5.何宗祐,向陽絹雲母水熱合成方沸石、氫氧鈣霞石及氫氧方鈉石之研究,國立成功大學資源工程學系碩士論文,2007。
    6.曾健倫,以絹雲母合成群青顏料之研究,國立成功大學資源工程學系碩士論文,2011。
    7.李雨柔,藍色群青之合成研究,國立成功大學資源工程學系碩士論文,2012。
    8.黃姿蓉,藍綠群青顏料合成研究,國立成功大學資源工程學系碩士論文,2013。
    9.Google 地圖︰http://maps.google.com.tw/
    10.台灣鄉土書目資料庫:http://localdoc.ncl.edu.tw/tmld/index.jsp
    11.王光明,土壤環境礦物學,藝軒圖書出版社,2000。
    12.趙杏媛及張有瑜,黏土礦物與黏土礦物分析,海洋出版社,1990。
    13.Klein, C., Mineral science, John Wiley & Sons, Inc., 2002.
    14.陳培源、劉德慶及黃怡禎,台灣之礦物,經濟部中央地質調查所,2004。
    15.王光明,氧化物/層狀矽酸鹽之構造、特性、鑑定、反應、生成及用途,國立編譯館,2009。
    16.溫紹炳、雷大同及黃紀嚴,台灣片狀矽酸鹽礦物之利用開發,經濟部礦業司,2000。
    17.台灣大百科全書︰http://taiwanpedia.culture.tw/web/index
    18.工業技術研究院化學工業研究所,染料與顏料研發規劃資料,經濟部工業局,1999。
    19.林瀚淵及嚴永熊,染顏料產業發展透析,經濟部技術處,2007。
    20.廖明隆,顏料化學,台灣文源書局有限公司,1988。
    21.舒昌明,苯駢咪唑酮紅色顏料之製程改進及產品性質研究,國立中正大學化學工程研究所碩士論文,2002。
    22.詹啟仁,光安定劑對聚氯乙烯塑膠內部顏料的影響,朝陽科技大學應用化學系碩士論文,2002。
    23.陳劉旺及童欽文,塗料製造化學,高立圖書有限公司,1997。
    24.周學良、劉東志、張天永及王世榮,顏料,化學工業出版社,2002。
    25.WebExhibtis http://www.webexhibits.org/causesofcolor/8.html
    26.Nassau K., The physics and chemistry of color: the fifteen causes of color, pp. 146-149.
    27.曾啓雄,色彩的科學與文化,耶魯國際文化事業有限公司,2003。
    28.鄭柏左,色彩理論與數位影像,新文京出版社,2004。
    29.大田登,陳鴻興及陳詩涵譯,色彩工程學︰理論與應用,全華科技圖書股份有限公司,2007。
    30.大田登,陳鴻興及陳君彥譯,基礎色彩再現工程,全華科技圖書股份有限公司,2003。
    31.Reinen, D. and G.G. Lindner, “The nature of the chalcogen colour centres in ultramarine-type solids,” Chemical Society Reviews, Vol.28, No.2, pp. 75-84, 1999.
    32.Sancho, J.P., O.J. Restrepo, P. Garcia, J. Ayala, B. Fernandez and L.F. Verdeja, “Ultramarine blue from Asturian "hard" kaolins,” Applied Clay Science, Vol.41, No.3-4, pp. 133-142, 2008.
    33.伏修鋒,青金石產地探源,“自然科學史研究”,第25卷,第3期,246-254頁,2006。
    34.Del Federico, E., W. Shofberger, J. Schelvis, S. Kapetanaki, L. Tyne and A. Jerschow, “Insight into framework destruction in ultramarine pigments,” Inorganic Chemistry, Vol.45, No.3, pp. 1270-1276, 2006.
    35.Climent-Pascual, E., R. Saez-Puche, A. Gomez-Herrero and J.R. de Paz, “Cluster ordering in synthetic ultramarine pigments,” Microporous and Mesoporous Materials, Vol.116, No.1-3, pp. 344-351, 2008.
    36.Landman, A.A. and D. De Waal, “Fly ash as a potential starting reagent for the synthesis of ultramarine blue,” Materials Research Bulletin, Vol.39, No.4-5, pp. 655-667, 2004.
    37.Kowalak, S., A. Jankowska and S. Laczkowska, “Preparation of various color ultramarine from zeolite A under environment-friendly conditions,” Catalysis Today, Vol.90, No.1-2, pp. 167-172, 2004.
    38.Clark, R.J.H. and D.G. Cobbold, “Characterization of sulfur radical-anions in solutions of alkali polysulfides in dimethylformamide and hexamethylphosphoramide and in solid-state in ultramarine blue, green, and red,” Inorganic Chemistry, Vol.17, No.11, pp. 3169-3174, 1978.
    39.台灣經濟研究院產經資料庫 http://tie.tier.org.tw/index.asp
    40.Klein, C. and C.S. Hurlbut, Jr., Manual of mineralogy, Revised 21th ed., John Wiley & Sons, Inc., New York, 1999.
    41.Gunter Buxbaum, Gerhard Pfaff主編,朱傳棨及項端四譯,工業無機顏料,化學工業出版社,2007。
    42.戴濟,顏料及塗料,台灣商務印書館股份有限公司,1973。
    43.Booth, D.G., S.E. Dann and M.T. Weller, “The effect of the cation composition on the synthesis and properties of ultramarine blue,” Dyes and Pigments, Vol.58, No.1, pp. 73-82, 2003.
    44.易發成、楊劍、宋綿新、李虎杰及蒙勇,“利用禾樂石黏土製備群青藍的研究,”礦產綜合利用,第4卷,8-12頁,2000。
    45.Kohler, P., G. Winter, F. Seel and K.P. Klos, “Ultramarine-yellow preparation and characterization of a rarity,” Zeitschrift Fur Naturforschung Section B-a Journal of Chemical Sciences, Vol.42, No.6, pp. 663, 1987.
    46.Kowalak, S., M. Pawlowska, M. Miluska, M. Strozyk, J. Kania and W. Przystajko, “Synthesis of ultramarine form synthetic molecular sieves,” Colloids and Surfaces, Vol.101, No.2-3, pp. 179-185, 1995.
    47.Lindner, G.G., K. Witke, H. Schlaich and D. Reinen, “Blue-green ultramarine-type zeolites with dimeric tellurium colour centres,” Inorganica Chimica Acta, Vol.252, No.1-2, pp. 39-45, 1996.
    48.Abou Sekkina M. M., Salahuddin N. A., Elmaghraby A. and El-Ashry M. Y., “New Ultramarine Generations from Egyption Raw Materials,” Research Journal of Chemical Sciences, Vol.1(2), pp. 88-98, 2011.
    49.Gobeltz, N., A. Demortier, J.P. Lelieur and C. Duhayon, “Encapsulation of the chromophores into the sodalite structure during the synthesis of the blue ultramarine pigment,” Journal of the Chemical Society-Faraday Transactions, Vol.94, No.15, pp. 2257-2260, 1998.
    50.Kowalak, S., A. Jankowska and S. Zeidler, “Ultramarine analogs synthesized from cancrinite,” Microporous and Mesoporous Materials, Vol.93, No.1-3, pp. 111-118, 2006.
    51.Jankowska, A. and S. Kowalak, “Synthesis of ultramarine analogs from erionite,” Microporous and Mesoporous Materials, Vol.110, No.2-3, pp. 570-578, 2008.
    52.Climent-Pascual, E., J.R. de Paz, J. Rodriguez-Carvajal, E. Surad and R. Saez-Puche, “Synthesis and Characterization of the Ultramarine-Type Analog Na8-x(Si6Al6O24)‧(S2,S3,CO3)1-2,” Inorganic Chemistry, Vol.48, No.14, pp. 6526-6533, 2009.
    53.Kowalak, S., A. Jankowska and E. Mikolajska, “Using of zeolite LOS for preparation of sulfur pigments,” Microporous and Mesoporous Materials, Vol.127, No.1-2, pp. 126-132, 2010.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE