簡易檢索 / 詳目顯示

研究生: 張耀仁
Chang, Yao-Jen
論文名稱: 黃光塗佈機清潔刮刀之研究及改善
The Study and Improvement of the Clean Pad For Photo Coating Machine
指導教授: 潘文峰
Pan, Wen-Fung
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系碩士在職專班
Department of Engineering Science (on the job class)
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 57
中文關鍵詞: 噴嘴清潔刮刀Ansys田口實驗方法Mini-tab
外文關鍵詞: Nozzle, Cleaning pad, Ansys, Taguchi experimental method, Mini-tab
相關次數: 點閱:140下載:26
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 黃光製程係使用滾輪或狹縫式噴嘴,將感光劑塗佈在基板上,再使用曝光機將光罩上的圖形印到感光劑,當感光劑與UV光反應後,再經由顯影製程,使用顯影液將未反應的區域去除,留下所需要的圖形,最終用烘烤機將感光劑定型,就是一道黃光製程的流程,也是一道製程的結構。
    黃光製程需考慮製程的均勻性,均勻性是看材料在基板上的最大/最小厚度或寬度分佈情形,當分佈不均時,會影響後製程的堆疊,造成組裝精度變差的問題,所以對於製程均勻性的要求,會選擇相對應的機台生產。而使用滾輪塗佈的方式,會因為滾輪或基板表面不平整,感光劑沾上後,塗佈在基板上就會均勻性不佳;狹縫式塗佈機,靠泵浦加壓到噴嘴,再擠到基板上,只要噴嘴的吐出壓力穩定時,就會有良好的均勻性。
    本次研究塗佈噴嘴的潔淨度,潔淨度除了會影響均勻性外,還會影響到產品品質。噴嘴在塗佈時,感光劑會在噴嘴產生毛細現象,當塗佈後表面、側面有殘餘感光劑,會造成表面感光劑固化、硬化,造成噴嘴內部堵塞或掉落在基板,形成不良缺陷,最終增加公司的營運成本,所以每次塗佈後,會清潔噴嘴表面,維持表面的潔淨度,降低下次生產時的缺陷掉落及不良品產生。
    噴嘴的清潔方式,通常有負壓抽氣與物理清潔法。抽氣是塗佈後的噴嘴,在負壓下,將表面感光劑快速抽掉;而物理清潔是使用刮刀,在塗佈後將噴嘴表面的感光劑刮除。此次研究噴嘴在清潔的過程,什麼動作會影響表面的潔淨度,並利用Ansys繪製模型及模擬刮刀清潔時的動作,模擬中找出材料的使用條件,並利用產品做實驗,將條件代入田口實驗設計,並收集測試後的結果,分析結果的S/N比,然後代入Mini-tab分析資料分佈與最有顯著關係的因子,並討論影響潔淨度機制。
    本次研究因子造成的影響原因,當刮刀壓入量在降伏應力區間時S/N比最高,Ansys的模擬可看出刮刀最貼合Nozzle、應力-應變較穩定,為最佳的清潔Nozzle條件;當刮刀在彈性區間,會因為刮刀與噴嘴的貼合性不好,造成噴嘴表面會清潔不淨;當接近極限應力,會因為刮刀變形過大及材料已進入頸縮階段,會產生刮不乾淨或材料提前劣化的狀況。而刮刀移動速度越慢,會降低刮刀與噴嘴移動時的摩擦力,所以才能提升Nozzle表面潔淨度,但刮刀移動速度的數據,非常態性分配,會影響數據分析,所以此次僅參考改善數據。

    The Photo process involves the precise application of photoresist to a substrate using roller-type or slit-type nozzles, followed by exposure to a photomask and subsequent development. The resulting pattern is crucial for the manufacturing process. However, achieving uniformity in the process is imperative to prevent adverse effects on downstream processes, such as decreased assembly precision. This research focuses on the Photo process, specifically examining the impact of coating nozzle cleanliness on uniformity and product quality.
    The coating method, whether using a roller-type or a slit-type nozzle, plays a vital role in determining uniformity. Uneven surfaces, typical in roller or substrate topography, can lead to poor coating uniformity. In contrast, the slit-coating use the pump to pressurize the photoresist and ensure stable compression pressure to have better uniformity.
    This study delves into the cleanliness of coating nozzles, recognizing its critical influence on both process uniformity and final product quality. Capillary action during coating may result in residual photoresist on the nozzle's surface, leading to defects and increased operational costs. Pre-coating cleaning procedures are essential to maintaining cleanliness and reducing the defects in subsequent production runs.
    Two primary cleaning methods, Exhausting pressure, or physical cleaning. Exhausting pressure involves rapidly removing surface photoresist under high pressure, while physical cleaning employs a pad to remove residual photoresist. The study explores the impact of these cleaning methods on nozzle cleanliness.
    Ansys is utilized to model and simulate the scraping action, determining optimal material usage conditions. Experimental trials are conducted, and the Taguchi experimental design is employed to collect and analyze data, with a focus on the signal-to-noise ratio (S/N). The influential factors are identified using Mini-tab, providing insights into the mechanisms affecting cleanliness.
    This study investigates the factors influencing the performance of a pad in the cleaning process. The Signal-to-Noise (S/N) ratio is highest when the pad penetration is within the yield stress area. Ansys simulations reveal that optimal cleaning conditions for the nozzle are achieved when the pad closely fits the nozzle, resulting in stable stress-strain behavior. However, in the elastic deformation area, poor fit between the pad and nozzle leads to ineffective cleaning of the nozzle surface. Approaching the limit stress causes excessive deformation of the pad and material entering the necking condition, leading to incomplete cleaning or premature material degradation. Slower pad moving speed reduces friction during pad-nozzle interaction, enhancing nozzle surface cleanliness. Nevertheless, the non-normal distribution of pad moving speed data may affect data analysis, necessitating caution in interpreting the improvement of data in this study.

    摘要 i ABSTRACT ii 誌謝 xiv 目錄 xv 表目錄 xvii 圖目錄 xviii 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 1 1.3 論文內容 9 第二章 相關理論與檢測機台 10 2.1 田口實驗設計簡介 10 2.2 Ansys軟體簡介[10] 10 2.3 Mini-tab軟體簡介 11 2.4 缺陷檢查機(Automatic Optical Inspection) [13-14] 12 第三章 最佳化條件模型建立及分析 15 3.1 Ansys建立Nozzle與刮刀的模型 15 3.2 邊界條件設定 18 3.3 材質選定 19 3.4 分析流程說明 22 第四章 模擬測試與條件分析 24 4.1 Nozzle壓入點分析 24 4.2刮刀速度分析 27 4.3 田口實驗設計及最佳條件分析 28 4.4 Mini-tab殘差分析 30 4.5 Mini-tab檢定分析 32 4.6 分析結果討論 33 第五章 結論 34 參考文獻 35

    1. Hsien-Ching Tsai, Advanced Process Developed and Defect Density Improvement of Color Filter, Master's Thesis of National Chiao Tung University, Chapter 2.3 (2008).
    2. 劉大佼,塗布加工技術,財團法人國家實驗研究院科技政策研究與資訊中心國內學術電子期刊系統,卷期418,pp. 64-66 (2007) 。
    3. Chi-Che Lin, VCD Bubble Improvement in Color-Filter Process of G8.5 TFT-LCD Fabrication, Master's Thesis of National Cheng Kung University, Chapter 2.5 (2012).
    4. 吳平耀,大面積基板塗佈製程解析,工研院工業材料研究所,卷期16,pp. 68-69 (2002)。
    5. Cong-Wei Chen, The Application of Slit Coating Technology in Panel Level Package, Master's Thesis of National University of Kaohsiung, Chapter 2.5 (2021).
    6. Hung-Han Chen, Testing the Localized Production of Slit Nozzles for LCD Array/Color Filter Large-Scale Photoresist Coating, Master's Thesis of National Chiao Tung University, Chapter 4.4 (2010).
    7. Sheng-Chan Huang, A Research on the Improvement of Exposure Machine for Enhancing Fabrication Process Yield, Master's Thesis of Kun Shan University, Chapter 6.3.1 (2013).
    8. Yuan-Hai Lee, Developer Concentration Monitor and Management in Color Filter Process, Master's Thesis of Kun Shan University, Chapter 2.3 (2017).
    9. Huei-Huang Lee, Taguchi Methods: Principles and Practices of Quality Design, Gau-Lih Book Co., Chapter 3.1 (2020).
    10. Huei-Huang Lee, Finite Element Simulations with ANSYS Workbench 2021(Theory, Applications, Case Studies), SDC Publications, Chapter 1 (2021).
    11. Paul Mathews, Design of Experiments with Minitab, ASQ, Chapter 1.1 (2004).
    12. Bai-Wei Guo, Applications of Chi-Square and One-Way ANOVA in Medical Research, Master's Thesis of University of Taipei, Chapter 3.1 (2012).
    13. Cheng-Wei Lei, Unsupervised Deep Learning System for AOI Detection, Master's Thesis of National Taiwan Normal University, Chapter 1.1 (2020).
    14. Chern-Sheng Lin, Jung Kuo, Chi-Chin Lin, Yun-Long Lay and Hung-Jung Shei, Automatic Inspection and Strategy for Surface Defects in the PI Coating Process of TFT‐LCD Panels, Assembly Automation, Vol. 31, No. 3, pp. 245-247 (2011).
    15. Shih-Ying Sun, Improvement of True/False Defects Detection Using Diffuse Reflection Inspection System in the Cell Process of LCD, Master's Thesis of National Chiao Tung University, Chapter 3.4 (2011).
    16. Tian Qiu, Xiao-Yan Lin, Xin Zhang, Chuan-Bo Qin, Chen-Jung Tsai, Lin Luo and Hong-Long Ning, Study on the Current Situation and Trends of OLED Defect Inspection for Cell Phase, Optoelectronic Technology, Chapter 3.2.2 (2021).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE