簡易檢索 / 詳目顯示

研究生: 鄭宗昇
Zeng, Zong-Sheng
論文名稱: 氮化鎵摻雜錳應用於中間能帶太陽能電池之光電特性探討
Photovoltaic Characteristics Studying of Mn-doped GaN Intermediate Band Solar Cells
指導教授: 許進恭
Sheu, Jinn-Komg
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 144
中文關鍵詞: 氮化鎵摻雜錳中間能帶太陽能電池電子傳遞機制
外文關鍵詞: Mn-doped GaN, intermediate band, solar cell, electron transfer mechanism
相關次數: 點閱:168下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要針對氮化鎵摻雜錳光電特性應用於中間能帶太陽能電池元件之特性探討。首先,我們利用穿透、低溫光致螢光PL對氮化鎵摻雜錳進行光電特性的分析。而由穿透率量測結果得知,氮化鎵摻雜錳會於禁止能帶內形成中間能帶,因此材料不僅能吸收能量大於氮化鎵能隙的光子,亦會吸收能量大於中間能帶與價(導)電帶間能量差值的光子,便將此特性應用於太陽能電池主動層,以期能貢獻出額外光電流。
    於太陽能電池部分,我們設計了兩種實驗來驗證中間能帶的存在以及分析其電子傳遞機制,其分別為雙光源外部量子效率EQE、雙雷射系統,另外利用高聚光太陽能模擬器來探討氮化鎵摻雜錳中間能帶太陽能電池在高聚光下的各項特性。並比較分析主動層氮化鎵摻雜不同錳流量對於中間能帶太陽能電池之影響,預期能藉由中間能帶與價(導)電帶間的吸收而貢獻出額外的光電流,進而提升轉換效率,以及了解氮化鎵摻雜錳中間能帶太陽能電池其內部電子傳遞機制。實驗結果與分析將於本論文中詳加描述。

    In this study we focused on the optical and electrical characteristics of Mn-doped GaN for application in the intermediate band solar cells (IBSCs). In the beginning we investigated Mn-doped GaN by transmittance spectrums and low temperature PL. According to the transmittance spectrums, the Mn-doped GaN exhibited that the Mn-related intermediate band was formed in the forbidden band of GaN. Therefore, apart from absorbing the photons with energy more than the band gap energy of GaN, the photons with energy that was higher than the difference between the intermediate band and the conduction (valence) band could also be absorbed. So we used the Mn-doped GaN as the active layer of solar cells, expecting that the intermediate band of Mn-doped GaN could contribute more photocurrent.
    As for the intermediate band solar cell(IBSCs),we designed two kinds of experiments , which were two photo external quantum efficiency EQE、dual laser system to verify the existence of the intermediate band and analyze its electron transfer mechanism. And using high-concentrator solar simulator to investigate the characteristics of Mn-doped GaN intermediate band solar cells (IBSCs) with high power light input.
    That the difference flow rate of Mn in GaN active layer affect intermediate band solar cells (IBSCs) are also compared , we expect the absorbtion of photons with energy that was higher than the difference between the intermediate band and the conduction (valence) band could devote extra photocurrent , and improve efficiency . The more details would be discussed in this thesis.

    摘要 I 英文摘要 II 誌謝 XIV 目錄 XV 圖目錄 XIX 表目錄 XXIII 第一章 序論 1 1.1 前言 1 1.2 氮化銦鎵太陽能電池簡介 2 1.3 中間能帶太陽能電池簡介(intermediate band solar cell) 5 1.4氮化鎵材料摻雜錳背景介紹 9 1.5 研究動機與論文架構 10 參考文獻 12 第二章 理論背景 16 2.1 太陽能電池簡介 16 2.2太陽能電池原理 16 2.3 氮化鎵摻雜錳理論背景 16 參考文獻 18 第三章 元件結構製程步驟與量測 19 3.1氮化鎵摻雜錳之中間能帶太陽能電池 19 3.2中間能帶太陽能電池之製程 21 3.2.1試片清潔 21 3.2.2中間能帶太陽能電池製程步驟 23 1.蒸鍍透明導電層 23 2.定義元件圖形及透明導電層蝕刻製程 23 3.電感耦合電漿蝕刻製程(Inductivity-coupled plasma, ICP) 25 4.透明導電層內縮蝕刻製程 26 5.石英爐管退火製程 27 6.金屬電極蒸鍍製程 28 7.元件完成 29 3.3量測儀器 36 3.3.1太陽光模擬器 36 3.3.2電流-電壓曲線量測 36 3.3.3 外部量子效率量測系統 37 3.3.4 雙光源外部量子效率量測系統 39 3.3.5 雙雷射量測系統儀器架構圖 41 第四章 量測結果分析與討論 43 4.1氮化鎵摻雜錳之光電特性分析與量測 43 4.1.1氮化鎵摻雜錳之穿透率量測 43 4.1.2氮化鎵摻雜錳之低溫(10k)光致螢光(PL)分析 46 4.2氮化鎵摻雜錳中間能帶太陽能電池量測分析與討論 47 4.2.1電致發光量測分析(EL) 48 4.2.2太陽能電池光電轉換特性分析 54 (1)順、逆向偏壓分析 54 (2)AM1.5G Solar Response 57 1. 開路電壓(VOC) 57 2. 光電流密度(JSC) 58 3. 填充因子(Fill Factor) 60 4. 光電轉換效率(Efficiency) 60 4.2.3外部量子效率(EQE)量測結果分析 64 4.2.4 高聚光量測結果分析 67 (1)短路電流(Jsc): 67 (2)開路電壓(Voc): 68 (3)填充因子(FF): 69 (4)光電轉換效率(Efficiency) 69 第五章 中間能帶之電子傳遞特性分析 77 5.1氮化鎵摻雜錳元件之內部電子傳遞分析 77 5.2 雙光源外部量子效率量測分析 77 5.2.1 更改808nm Laser Power部分 78 5.2.1.1 Xe燈波長800nm更改808nm Laser Power 79 5.2.1.2 Xe燈波長480nm更改808nm Laser Power 86 5.2.1.3 Xe燈波長360nm更改808nm Laser Power 94 5.2.2 更改405nm Laser Power部分 100 5.2.2.1 Xe燈波長800nm更改405nm Laser Power 101 (i)405nm Laser power小功率(0mW~0.8mW)照射下: 103 (ii)405nm Laser power大功率(0.8mW~16.7mW)照射下: 107 5.2.2.2 Xe燈波長450nm更改405nm Laser Power 111 (i)405nm Laser power小功率(0mW~0.8mW)照射下: 113 (ii)405nm Laser power大功率(0.8mW~16.7mW) 照射下: 118 5.2.2.3 Xe燈波長350nm更改405nm Laser Power 123 (i)405nm Laser power小功率(0mW~0.8mW)照射下: 125 (ii)405nm Laser power大功率(0.8mW~16.7mW)下: 130 5.3雙雷射量測系統之中間能帶特性分析 136 5.3.1更改808nm雷射功率部分 : 136 5.3.2更改405nm雷射功率部分 : 140 第六章 結論與未來展望 142

    英文摘要
    [1]A.Luque and A marti ,”Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,”Phys.Rev.Lett.,vol 78,pp.5014-5014,1997.

    [2]A.Luque and A marti ,”A metallic intermediate band high efficiency solar cells ,”Prog.Photovolt:Res.Appl.,vol.9,pp.73-86,2001
    .
    [3] A marti ,C. Tablero,E.Antolin, A.Luque,R.P.Campion,S.V.Novikov and C.T.Focon, ”Potential of Mn doped In1-xGaxN for implementiog intermediate band solar cells,”Sol.Energy Mater.Sol Cell,vol.93,pp.641-644,2009.

    [4] E.Antolin ,A marti ,C.R.Stanley, C Farmer,and P. Diaz , ”Experimental analysis of the
    Operation of quantum dot intermediate band solar cells,” J . Sol. Energy Eng.,129,pp.319-322,2007.

    [5] E.Antolin ,A marti ,C.R.Stanley, C.D. Farmer,E Canovas , N. Lopez, P.G. Linares,and A.Luque ”Low temperature characterization of the photocurrent produced by two-photon transitions in quantum dot intermediate band solar cell,”Thin Solid Films,vol.516,pp. 6919-6923,2008

    [6] C.J.Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. Denbaars and U. K. Mishra ,”High quantum efficiency InGaN/GaN solar cells with 2.95eV band gap,”Appl.Phys.Lett., vol .93,pp143502,2008

    [7] F.W.Huang, j.k.Sheu,M.L.Lee,S.J.Tu,W.C. Lai,W.C. Chang ,”Linear photon up-conversion of 450meV in InGaN/GaN multiple wells via Mn-doped GaN intermediate band photodetection,”opt.Express,vol.19,pp.A1211-A1218,2001

    第一章
    [1] Fritts C, “New Form of Selenium Cell, with some Remarkable Electrical Discoveries made by its Usef”, Proc. Am. Assoc. Adv. Sci. Vol.33, pp.97 (1883).
    [2] D. M. Chapin,C. S. Fuller, andG. L. Pearson, “A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power”, J. Appl. Phys. Vol.25, pp.676-677 (1954).
    [3] D.C.Reynolds,G.Leies,L.L.Antes, andR.E.Marburger, “Photovoltaic Effect in Cadmium Sulfide”, Phys. Rev. Vol.96, pp.533-534 (1954).
    [4] M. B. Prince, “Silicon Solar Energy Converters”, J. Appl. Phys. Vol.26, pp. 534-540 (1955).
    [5] Joseph J. Loferski, “Theoretical Considerations Governing the Choice of the Optimum Semiconductor for Photovoltaic Solar Energy Conversion”, J. Appl. Phys. Vol.27, pp. 777-784 (1956).
    [6] Joseph J. WysockiandPaul Rappaport, “Effect of Temperature on Photovoltaic Solar Energy Conversion”, J. Appl. Phys. Vol.31, pp.571-578 (1960).
    [7] William ShockleyandHans J. Queisser, “Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells”, J. Appl. Phys. Vol.32, pp.510–519 (1961).
    [8] J. F. Muth, J. H. Lee, I. K. Shmagin, and R. M. Kobas, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements”, Appl. Phys. Lett. 71 (18), 3 November 1997.
    [9] J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager Ⅲ, E.E. Haller, Hai Lu, and William J. Schaff, “Fermi-level stabilization in group Ⅲ nitrides”, Phys. Rev. B 71, 161201 (R), 2005.
    [10] R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Optical properties of the deep Mn acceptor in GaN:Mn”, Appl. Phys. Lett. 80, pp. 1731, (2002).
    [11] E. Monroy, E. Muñoz, F. J. Sánchez, F. Calle, E. Calleja, B. Beaumout, P. Gibart, J. A. Muñoz, and F. Cussó, “High-performance GaN p–n junction photodetectors for solar ultraviolet applications” , Semicond. Sci. Technol. vol. 13, pp. 1042-1046, (1998).
    [12] Antonio Luque and Antonio Martı´, “Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels”, Phys. Rev. Lett. Vol. 78, pp. 26, (1997).
    [13] Luque, A., Cuadra, L. , Marti, A. , “Partial filling of a quantum dot intermediate band for solar cells”, IEEE Electron Device Lett. Vol.48, no.10, pp.2394, (2001).
    [14] Luque, A., Marti, A. and Colin Stanley , “Understanding intermediate-band solar cells”, Nature Photonics 6, pp.146–152, (2012).
    [15] J. Olea, M. Toledano-Luque, D. Pastor, G. González-Díaz, and I. Mártil , “Titanium doped silicon layers with very high concentration”, J. Appl. Phys. Vol. 104, pp.016105, (2008).

    [16] K. M. Yu, W. Walukiewicz, J. W. Ager, D. Bour, R. Farshchi, O. D. Dubon, S. X. Li, I. D. Sharp, and E. E. Haller, “Multiband GaNAsP quaternary alloys”, Appl. Phys. Lett. Vol. 88, pp. 092110, (2006).
    [17] Wang, W., Lin, A. S. and Phillips, J. D. , “Intermediate-band photovoltaic solar cell based on ZnTe:O ”, Appl. Phys. Lett. Vol. 95, pp. 011103, (2009).
    [18] N. Lo´pez, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, “Engineering the Electronic Band Structure for Multiband Solar Cells”, Phys. Rev. Lett. Vol. 106, pp. 028701, (2011).
    [19] M. L. Reed, N. A. El-Masry, H. H. Stadelmaier, M. K. Ritums, and M. J. Reed, “Room temperature ferromagnetic properties of (Ga, Mn)N”, Appl. Phys. Lett. vol. 79, pp. 3473, (2001).
    [20] F. E. Arkun, M. J. Reed, E. A. Berkman, and N. A. El-Masry, “Dependence of ferromagnetic properties on carrier transfer at GaMnN/GaN:Mg interface”, Appl. Phys. Lett. vol. 85, pp. 3809, (2004).
    [21] R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Optical properties of the deep Mn acceptor in GaN:Mn”, Appl. Phys. Lett. 80, pp. 1731, (2002).
    [22] T. Graf, M. Gjukic, M. S. Brandt, M. Stutzmann, and O. Ambacher, “ The Mn3+/2+ acceptor level in group III nitrides”, Appl. Phys. Lett. vol. 81, pp. 5159, (2002).
    [23] R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Mn-related absorption and PL bands in GaN grown by metal organic vapor phase epitaxy”, Physica B. vol. 308, pp. 30, (2001).
    [24] N. Nepal, Amr M. Mahros, S. M. Bedair, N. A. El-Masry, and J. M. Zavada, “Correlation between photoluminescence and magnetic properties of GaMnN films”, Appl. Phys. Lett. vol. 91, pp. 242502, (2007).
    [25] Antonio Luque and Antonio Martı´, “Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels”, Phys. Rev. Lett. Vol. 78, pp. 26, (1997).
    [26] L.Cuadra, A. Martı’, A.Luque, “Present status of intermediate band solar cell research”, Thin Solid Films, 451-452, 593-599, (2004).
    [27] A.Martı´, C.Tablero, E.Antolı´n, A.Luque, R.P.Campion, S.V.Novikov, C.T.Foxon, “Potential of Mn doped In1-XGaXN for implementing intermediate band solar cells”, Solar Energy Materials & Solar Cells, 93, (2009), 641-644.
    [28] Wang, W., Lin, A. S. and Phillips, J. D. , “Intermediate-band photovoltaic solar cell based on ZnTe:O ”, Appl. Phys. Lett. Vol. 95, pp. 011103, (2009).
    [29] N. Lo´pez, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, “Engineering the Electronic Band Structure for Multiband Solar Cells”, Phys. Rev. Lett. Vol. 106, pp. 028701, (2011).

    第二章
    [1] 李佳輝, “ 氮化鎵摻雜錳應用於中間能帶太陽能電池之研究”, 國立成功大學光電科學與工程研究所, 碩士論文, (2012).
    [2] 劉宇軒, “錳摻雜於氮化鎵系列材料之光電特性研究與元件應用”, 國立成功大學光電科學與工程研究所, 碩士論文, (2008).
    [3] P. Boguslawski and J. Bernholc, “ Fermi-level effects on the electronic structure and magnetic couplings in (Ga,Mn)N”, Phys. Rev. B 72, 115208, (2005).
    [4] R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Optical properties of the deep Mn acceptor in GaN:Mn”, Appl. Phys. Lett. vol. 80, pp. 1731, (2002).
    [5] T. Graf, M. Gjukic, M. S. Brandt, M. Stutzmann, and O. Ambacher, “ The Mn3+/2+acceptor level in group III nitrides”, Appl. Phys. Lett. vol. 81, p. 5159, (2002).
    [6] R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Mn-related absorption and PL bands in GaN grown by metal organic vapor phase epitaxy”, Physica B vol. 308, pp. 30, (2001).
    [7] F. E. Arkun, A. M. Mahros, N. A. El-Masry, J. Muth, X. Zhang, J. M. Zavada, and S. M. Bedair, Materials Research Society Symposia Proceedings vol. 955 (Materials Research Society, Pittsburgh, 2006 p.0955-I07 -02

    下載圖示 校內:2017-07-01公開
    校外:2017-07-01公開
    QR CODE