| 研究生: |
鄭宗昇 Zeng, Zong-Sheng |
|---|---|
| 論文名稱: |
氮化鎵摻雜錳應用於中間能帶太陽能電池之光電特性探討 Photovoltaic Characteristics Studying of Mn-doped GaN Intermediate Band Solar Cells |
| 指導教授: |
許進恭
Sheu, Jinn-Komg |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 144 |
| 中文關鍵詞: | 氮化鎵摻雜錳 、中間能帶 、太陽能電池 、電子傳遞機制 |
| 外文關鍵詞: | Mn-doped GaN, intermediate band, solar cell, electron transfer mechanism |
| 相關次數: | 點閱:168 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要針對氮化鎵摻雜錳光電特性應用於中間能帶太陽能電池元件之特性探討。首先,我們利用穿透、低溫光致螢光PL對氮化鎵摻雜錳進行光電特性的分析。而由穿透率量測結果得知,氮化鎵摻雜錳會於禁止能帶內形成中間能帶,因此材料不僅能吸收能量大於氮化鎵能隙的光子,亦會吸收能量大於中間能帶與價(導)電帶間能量差值的光子,便將此特性應用於太陽能電池主動層,以期能貢獻出額外光電流。
於太陽能電池部分,我們設計了兩種實驗來驗證中間能帶的存在以及分析其電子傳遞機制,其分別為雙光源外部量子效率EQE、雙雷射系統,另外利用高聚光太陽能模擬器來探討氮化鎵摻雜錳中間能帶太陽能電池在高聚光下的各項特性。並比較分析主動層氮化鎵摻雜不同錳流量對於中間能帶太陽能電池之影響,預期能藉由中間能帶與價(導)電帶間的吸收而貢獻出額外的光電流,進而提升轉換效率,以及了解氮化鎵摻雜錳中間能帶太陽能電池其內部電子傳遞機制。實驗結果與分析將於本論文中詳加描述。
In this study we focused on the optical and electrical characteristics of Mn-doped GaN for application in the intermediate band solar cells (IBSCs). In the beginning we investigated Mn-doped GaN by transmittance spectrums and low temperature PL. According to the transmittance spectrums, the Mn-doped GaN exhibited that the Mn-related intermediate band was formed in the forbidden band of GaN. Therefore, apart from absorbing the photons with energy more than the band gap energy of GaN, the photons with energy that was higher than the difference between the intermediate band and the conduction (valence) band could also be absorbed. So we used the Mn-doped GaN as the active layer of solar cells, expecting that the intermediate band of Mn-doped GaN could contribute more photocurrent.
As for the intermediate band solar cell(IBSCs),we designed two kinds of experiments , which were two photo external quantum efficiency EQE、dual laser system to verify the existence of the intermediate band and analyze its electron transfer mechanism. And using high-concentrator solar simulator to investigate the characteristics of Mn-doped GaN intermediate band solar cells (IBSCs) with high power light input.
That the difference flow rate of Mn in GaN active layer affect intermediate band solar cells (IBSCs) are also compared , we expect the absorbtion of photons with energy that was higher than the difference between the intermediate band and the conduction (valence) band could devote extra photocurrent , and improve efficiency . The more details would be discussed in this thesis.
英文摘要
[1]A.Luque and A marti ,”Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,”Phys.Rev.Lett.,vol 78,pp.5014-5014,1997.
[2]A.Luque and A marti ,”A metallic intermediate band high efficiency solar cells ,”Prog.Photovolt:Res.Appl.,vol.9,pp.73-86,2001
.
[3] A marti ,C. Tablero,E.Antolin, A.Luque,R.P.Campion,S.V.Novikov and C.T.Focon, ”Potential of Mn doped In1-xGaxN for implementiog intermediate band solar cells,”Sol.Energy Mater.Sol Cell,vol.93,pp.641-644,2009.
[4] E.Antolin ,A marti ,C.R.Stanley, C Farmer,and P. Diaz , ”Experimental analysis of the
Operation of quantum dot intermediate band solar cells,” J . Sol. Energy Eng.,129,pp.319-322,2007.
[5] E.Antolin ,A marti ,C.R.Stanley, C.D. Farmer,E Canovas , N. Lopez, P.G. Linares,and A.Luque ”Low temperature characterization of the photocurrent produced by two-photon transitions in quantum dot intermediate band solar cell,”Thin Solid Films,vol.516,pp. 6919-6923,2008
[6] C.J.Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. Denbaars and U. K. Mishra ,”High quantum efficiency InGaN/GaN solar cells with 2.95eV band gap,”Appl.Phys.Lett., vol .93,pp143502,2008
[7] F.W.Huang, j.k.Sheu,M.L.Lee,S.J.Tu,W.C. Lai,W.C. Chang ,”Linear photon up-conversion of 450meV in InGaN/GaN multiple wells via Mn-doped GaN intermediate band photodetection,”opt.Express,vol.19,pp.A1211-A1218,2001
第一章
[1] Fritts C, “New Form of Selenium Cell, with some Remarkable Electrical Discoveries made by its Usef”, Proc. Am. Assoc. Adv. Sci. Vol.33, pp.97 (1883).
[2] D. M. Chapin,C. S. Fuller, andG. L. Pearson, “A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power”, J. Appl. Phys. Vol.25, pp.676-677 (1954).
[3] D.C.Reynolds,G.Leies,L.L.Antes, andR.E.Marburger, “Photovoltaic Effect in Cadmium Sulfide”, Phys. Rev. Vol.96, pp.533-534 (1954).
[4] M. B. Prince, “Silicon Solar Energy Converters”, J. Appl. Phys. Vol.26, pp. 534-540 (1955).
[5] Joseph J. Loferski, “Theoretical Considerations Governing the Choice of the Optimum Semiconductor for Photovoltaic Solar Energy Conversion”, J. Appl. Phys. Vol.27, pp. 777-784 (1956).
[6] Joseph J. WysockiandPaul Rappaport, “Effect of Temperature on Photovoltaic Solar Energy Conversion”, J. Appl. Phys. Vol.31, pp.571-578 (1960).
[7] William ShockleyandHans J. Queisser, “Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells”, J. Appl. Phys. Vol.32, pp.510–519 (1961).
[8] J. F. Muth, J. H. Lee, I. K. Shmagin, and R. M. Kobas, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements”, Appl. Phys. Lett. 71 (18), 3 November 1997.
[9] J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager Ⅲ, E.E. Haller, Hai Lu, and William J. Schaff, “Fermi-level stabilization in group Ⅲ nitrides”, Phys. Rev. B 71, 161201 (R), 2005.
[10] R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Optical properties of the deep Mn acceptor in GaN:Mn”, Appl. Phys. Lett. 80, pp. 1731, (2002).
[11] E. Monroy, E. Muñoz, F. J. Sánchez, F. Calle, E. Calleja, B. Beaumout, P. Gibart, J. A. Muñoz, and F. Cussó, “High-performance GaN p–n junction photodetectors for solar ultraviolet applications” , Semicond. Sci. Technol. vol. 13, pp. 1042-1046, (1998).
[12] Antonio Luque and Antonio Martı´, “Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels”, Phys. Rev. Lett. Vol. 78, pp. 26, (1997).
[13] Luque, A., Cuadra, L. , Marti, A. , “Partial filling of a quantum dot intermediate band for solar cells”, IEEE Electron Device Lett. Vol.48, no.10, pp.2394, (2001).
[14] Luque, A., Marti, A. and Colin Stanley , “Understanding intermediate-band solar cells”, Nature Photonics 6, pp.146–152, (2012).
[15] J. Olea, M. Toledano-Luque, D. Pastor, G. González-Díaz, and I. Mártil , “Titanium doped silicon layers with very high concentration”, J. Appl. Phys. Vol. 104, pp.016105, (2008).
[16] K. M. Yu, W. Walukiewicz, J. W. Ager, D. Bour, R. Farshchi, O. D. Dubon, S. X. Li, I. D. Sharp, and E. E. Haller, “Multiband GaNAsP quaternary alloys”, Appl. Phys. Lett. Vol. 88, pp. 092110, (2006).
[17] Wang, W., Lin, A. S. and Phillips, J. D. , “Intermediate-band photovoltaic solar cell based on ZnTe:O ”, Appl. Phys. Lett. Vol. 95, pp. 011103, (2009).
[18] N. Lo´pez, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, “Engineering the Electronic Band Structure for Multiband Solar Cells”, Phys. Rev. Lett. Vol. 106, pp. 028701, (2011).
[19] M. L. Reed, N. A. El-Masry, H. H. Stadelmaier, M. K. Ritums, and M. J. Reed, “Room temperature ferromagnetic properties of (Ga, Mn)N”, Appl. Phys. Lett. vol. 79, pp. 3473, (2001).
[20] F. E. Arkun, M. J. Reed, E. A. Berkman, and N. A. El-Masry, “Dependence of ferromagnetic properties on carrier transfer at GaMnN/GaN:Mg interface”, Appl. Phys. Lett. vol. 85, pp. 3809, (2004).
[21] R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Optical properties of the deep Mn acceptor in GaN:Mn”, Appl. Phys. Lett. 80, pp. 1731, (2002).
[22] T. Graf, M. Gjukic, M. S. Brandt, M. Stutzmann, and O. Ambacher, “ The Mn3+/2+ acceptor level in group III nitrides”, Appl. Phys. Lett. vol. 81, pp. 5159, (2002).
[23] R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Mn-related absorption and PL bands in GaN grown by metal organic vapor phase epitaxy”, Physica B. vol. 308, pp. 30, (2001).
[24] N. Nepal, Amr M. Mahros, S. M. Bedair, N. A. El-Masry, and J. M. Zavada, “Correlation between photoluminescence and magnetic properties of GaMnN films”, Appl. Phys. Lett. vol. 91, pp. 242502, (2007).
[25] Antonio Luque and Antonio Martı´, “Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels”, Phys. Rev. Lett. Vol. 78, pp. 26, (1997).
[26] L.Cuadra, A. Martı’, A.Luque, “Present status of intermediate band solar cell research”, Thin Solid Films, 451-452, 593-599, (2004).
[27] A.Martı´, C.Tablero, E.Antolı´n, A.Luque, R.P.Campion, S.V.Novikov, C.T.Foxon, “Potential of Mn doped In1-XGaXN for implementing intermediate band solar cells”, Solar Energy Materials & Solar Cells, 93, (2009), 641-644.
[28] Wang, W., Lin, A. S. and Phillips, J. D. , “Intermediate-band photovoltaic solar cell based on ZnTe:O ”, Appl. Phys. Lett. Vol. 95, pp. 011103, (2009).
[29] N. Lo´pez, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, “Engineering the Electronic Band Structure for Multiband Solar Cells”, Phys. Rev. Lett. Vol. 106, pp. 028701, (2011).
第二章
[1] 李佳輝, “ 氮化鎵摻雜錳應用於中間能帶太陽能電池之研究”, 國立成功大學光電科學與工程研究所, 碩士論文, (2012).
[2] 劉宇軒, “錳摻雜於氮化鎵系列材料之光電特性研究與元件應用”, 國立成功大學光電科學與工程研究所, 碩士論文, (2008).
[3] P. Boguslawski and J. Bernholc, “ Fermi-level effects on the electronic structure and magnetic couplings in (Ga,Mn)N”, Phys. Rev. B 72, 115208, (2005).
[4] R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Optical properties of the deep Mn acceptor in GaN:Mn”, Appl. Phys. Lett. vol. 80, pp. 1731, (2002).
[5] T. Graf, M. Gjukic, M. S. Brandt, M. Stutzmann, and O. Ambacher, “ The Mn3+/2+acceptor level in group III nitrides”, Appl. Phys. Lett. vol. 81, p. 5159, (2002).
[6] R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Mn-related absorption and PL bands in GaN grown by metal organic vapor phase epitaxy”, Physica B vol. 308, pp. 30, (2001).
[7] F. E. Arkun, A. M. Mahros, N. A. El-Masry, J. Muth, X. Zhang, J. M. Zavada, and S. M. Bedair, Materials Research Society Symposia Proceedings vol. 955 (Materials Research Society, Pittsburgh, 2006 p.0955-I07 -02