簡易檢索 / 詳目顯示

研究生: 王耀霆
Wang, Yao-Ting
論文名稱: 無光罩微影技術之光源系統開發與稜鏡斜角成像曝光之可行性研究
Development of Light Source System for Maskless Lithography and Feasibility Study on Prism Oblique Imaging Exposure
指導教授: 李永春
Lee, Yung-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 96
中文關鍵詞: 無光罩微影紫外光發光二極體複眼均光器傾斜微結構
外文關鍵詞: Maskless Lithography, UV-LED, Fly’s Eye Homogenizer, Slanted Microstructure
相關次數: 點閱:87下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對單鏡頭成像的無光罩曝光微影技術進行二項研究,首先是開發可應用於無光罩曝光的紫外光均光光源,研究內容包括:設計模擬、製作組裝、與實驗測試;另外,本論文嘗試利用稜鏡的折射,讓無光罩曝光機可以進行斜入射的光阻曝光,得到具有傾斜角的光阻微結構。
    在均光光源的開發上,針對以數位微反射鏡裝置(Digital Micromirror Device, DMD) 為主的無光罩曝光機,本研究採用波長405 nm的紫外光發光二極體 (Ultraviolet Emitting Diode, UV-LED) 為光源,並以成像式的複眼均光系統為基礎,經由準直透鏡、透鏡陣列、與投射鏡片,最後完成一均光面積14x8 、光學均勻度90 %以上的紫光光均光光源,可以搭配DMD與成像鏡組完成無光罩曝光與微影製程。在斜入射的成像曝光方面,首先進行理論推導與模擬分析,最後進行實際的曝光測試;其架構是利用稜鏡將原本光線垂直入射的成像方式,改變成光線是由與光阻表面傾斜入射的方式成像,進而完成具傾斜角的光阻微結構;本文將討論此一構想的分析模擬與初步的實驗結果。

    This thesis focuses on two research topics for the ultraviolet (UV) image exposure of photo-resist (PR) in maskless lithography. The first one is to develop and manufacture the homogenized UV light source for maskless lithography, which involves design, analysis, simulation, fabrication, assembly, and finally experiment and testing. The second one is to apply maskless UV exposure for oblique image exposure of PR such that PR microstructures with a slanted angle can be achieved.
    For the maskless UV exposure based on Digital Micromirror Device (DMD), the high power ultraviolet emitting diodes (UV-LED) of 405 nm wavelength are chosen as the light source. The fly eyes’ homogenizing system is adopted and is consisting of collimating lens, microlens arrays, and projection lens. Finally, an uniformly distributed UV lighting area with an area size of 14x8 mm^2 and a homogeneity fo 90% was achieved, which can be directly applied to the DMD and image projection lens for maskless lithography.
    As for the oblique imaging exposure of PR layers, a prism is inserted into the optical path of the maskless UV exposure system. Due to the refraction of light by the prism, the original image is now changed into a new image in which the UV light is incident on the image plane with an incident angle other than 90°. Therefore, PR microstructures with a slanted angle can be achieved. Theoretical analysis and simulation results will be addressed along with preliminary experimental results.

    摘要 I Abstract II 致謝 XVI 目錄 XVII 表目錄 XIX 圖目錄 XX 第1章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.2.1 光源均光器與透鏡製造 5 1.2.2 斜面三維微結構製造 7 1.3 論文綱要 10 第2章 無光罩微影系統架構 11 2.1 光學投影系統 11 2.1.1 數位微鏡面裝置與控制板 12 2.1.2 紫外光光源 16 2.1.3 雙遠心投影系統 17 2.2 高精度三軸運動平台 21 第3章 光源開發模擬與製作 23 3.1 光源開發模擬 23 3.1.1 成像式複眼透鏡陣列 23 3.1.2 光源設計參數與材料選用 26 3.1.3 光學模擬與透鏡陣列設計 30 3.2 複眼透鏡製作與組裝 35 3.2.1 複眼透鏡模具量測 35 3.2.2 陣列翻模製作 39 3.2.3 複眼透鏡量測 40 3.3 光源系統成品與實驗結果 44 3.3.1 LED光源控制板與成品 44 3.3.2 能量量測與結果 46 第4章 稜鏡輔助斜面曝光 54 4.1 斜面曝光理論 54 4.2 斜面曝光模型計算 58 4.3 斜面曝光模擬分析 62 4.4 斜面曝光實驗結果 68 4.4.1 單鏡頭無光罩曝光系統 68 4.4.2 直接曝光與稜鏡輔助製程與曝光結果 73 4.4.3 直接斜面曝光結果 86 第5章 結論與未來展望 89 5.1 結論 89 5.2 未來展望 90 參考文獻 92

    [1] Schille, J., Schneider, L., Streek, A., Kloetzer, S., & Loeschner, U. (2016). High-throughput machining using a high-average power ultrashort pulse laser and high-speed polygon scanner. Optical Engineering, 55(9), 096109.
    [2] Tseng, S. F., Cheng, P. Y., Hsiao, W. T., Chen, M. F., Chung, C. K., & Wang, P. H. (2019). High-performance graphene-based heaters fabricated using maskless ultraviolet laser patterning. The International Journal of Advanced Manufacturing Technology, 102(9), 3011-3020.
    [3] Smeesters, L., Meulebroeck, W., & Thienpont, H. (2018, May). Design of an optical refocusing illumination system for use in laser-scanning devices. Illumination Optics V , Vol. 10693, p. 1069302.
    [4] Pease, R. F. (2005). Maskless lithography. Microelectronic Engineering, 78, 381-392.
    [5] Itoh, T., Matsunaga, S., & Okada, N. (2015, September). Development of the laser beam scanner which uses the prism cube mirror with DMD. IEEE Conference on Control Applications (CCA) , p. 288-293.
    [6] Groves, T. R., Pickard, D., Rafferty, B., Crosland, N., Adam, D., & Schubert, G. (2002). Maskless electron beam lithography: prospects, progress, and challenges. Microelectronic Engineering, 61, 285-293.
    [7] Hansotte, E. J., Carignan, E. C., & Meisburger, W. D. (2011, February). High speed maskless lithography of printed circuit boards using digital micromirrors. Emerging Digital Micromirror Device Based Systems and Applications III , Vol. 7932, p. 793207.
    [8] Huang, S., Li, M., Wang, L., Su, Y., & Liang, Y. (2019). Precise fabrication of large-area microstructures by digital oblique scanning lithography strategy and stage self-calibration technique. Applied Physics Express, 12(9), 096501.
    [9] Chien, H. L., Chiu, Y. H., & Lee, Y. C. (2021). Maskless lithography based on oblique scanning of point array with digital distortion correction. Optics and Lasers in Engineering, 136, 106313.
    [10] Zimmermann, M., Lindlein, N., Voelkel, R., & Weible, K. J. (2007, September). Microlens laser beam homogenizer: from theory to application. Laser Beam Shaping VIII , Vol. 6663, p. 666302.
    [11] Deng, X., Liang, X., Chen, Z., Yu, W., & Ma, R. (1986). Uniform illumination of large targets using a lens array. Applied Optics, 25(3), 377-381.
    [12] Dickey, F. M., & Holswade, S. C. (Eds.). (2000). Laser Beam Shaping , p. 1-20. New York: Marcel Dekker.
    [13] Voelkel, R., & Weible, K. J. (2008, September). Laser beam homogenizing: limitations and constraints. Optical Fabrication, Testing, and Metrology III , Vol. 7102, p. 71020J.
    [14] Yang, R., & Wang, W. (2004). Out-of-plane polymer refractive microlens fabricated based on direct lithography of SU-8. Sensors and Actuators A: Physical, 113(1), 71-77.
    [15] Shih, T. K., Chen, C. F., Ho, J. R., & Chuang, F. T. (2006). Fabrication of PDMS (polydimethylsiloxane) microlens and diffuser using replica molding. Microelectronic Engineering, 83(11-12), 2499-2503.
    [16] Awatsuji, Y., Sasada, M., Kawano, N., & Kubota, T. (2004). Reflective microoptical element array fabricated by photofabrication technique. Japanese Journal of Applied Physics, 43(8S), 5845.
    [17] Lee, C. S., & Han, C. H. (2001). A novel refractive silicon microlens array using bulk micromachining technology. Sensors and Actuators A: Physical, 88(1), 87-90.
    [18] Fu, Y. Q., Kok, N., & Bryan, A. (2000). Microfabrication of microlens array by focused ion beam technology. Microelectronic Engineering, 54(3-4), 211-221.
    [19] Gu, E., Choi, H. W., Liu, C., Griffin, C., Girkin, J. M., Watson, I. M., ... & Gurney, A. M. (2004). Reflection/transmission confocal microscopy characterization of single-crystal diamond microlens arrays. Applied Physics Letters, 84(15), 2754-2756.
    [20] Yuan, X. C., Yu, W. X., He, M., Bu, J., Cheong, W. C., Niu, H. B., & Peng, X. (2005). Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO 2–TiO 2 sol-gel glass. Applied Physics Letters, 86(11), 114102.
    [21] Parashar, V. K., Sayah, A., Pfeffer, M., Schoch, F., Gobrecht, J., & Gijs, M. A. M. (2003). Nano-replication of diffractive optical elements in sol–gel derived glasses. Microelectronic Engineering, 67, 710-719.
    [22] Ikuta, K., Ogata, T., Tsubio, M., & Kojima, S. (1996, February). Development of mass productive micro stereo lithography (Mass-IH Process). Proceedings of Ninth International Workshop on Micro Electromechanical Systems IEEE, p. 301-306.
    [23] Waits, C. M., Morgan, B., Kastantin, M., & Ghodssi, R. (2005). Microfabrication of 3D silicon MEMS structures using gray-scale lithography and deep reactive ion etching. Sensors and Actuators A: Physical, 119(1), 245-253.
    [24] Larsson, M. P. (2006). Arbitrarily profiled 3D polymer MEMS through Si micro-moulding and bulk micromachining. Microelectronic Engineering, 83(4-9), 1257-1260.
    [25] Tabata, O., Matsuzuka, N., Yamaji, T., Uemura, S., & Yamamoto, K. (2002, January). 3D fabrication by moving mask deep X-ray lithography (M/sup 2/DXL) with multiple stages. Technical Digest. MEMS 2002 IEEE International Conference. Fifteenth IEEE International Conference on Micro Electro Mechanical Systems IEEE, Cat. No. 02CH37266, p. 180-183.
    [26] Han, M., Lee, W., Lee, S. K., & Lee, S. S. (2004). 3D microfabrication with inclined/rotated UV lithography. Sensors and Actuators A: Physical, 111(1), 14-20.
    [27] Huang, C., Wippold, J. A., Stratis-Cullum, D., & Han, A. (2020). Eliminating air bubble in microfluidic systems utilizing integrated in-line sloped microstructures. Biomedical Microdevices, 22(4), 1-9.
    [28] Cai, G., Liu, F., & Wu, T. (2021). Slippery liquid-infused porous surfaces with inclined microstructures to enhance durable anti-biofouling performances. Colloids and Surfaces B: Biointerfaces, 202, 111667.
    [29] Wu, D., Zhang, Z., Zhang, Y., Jiao, Y., Jiang, ... & Jiang, L. (2020). High‐Performance Unidirectional Manipulation of Microdroplets by Horizontal Vibration on Femtosecond Laser‐Induced Slant Microwall Arrays. Advanced Materials, 32(48), 2005039.
    [30] Huang, Y. J., Chang, T. L., Chou, H. P., & Lin, C. H. (2008). A novel fabrication method for forming inclined groove-based microstructures using optical elements. Japanese Journal of Applied Physics, 47(6S), 5287.
    [31] Beuret, C., Racine, G. A., Gobet, J., Luthier, R., & De Rooij, N. F. (1994, January). Microfabrication of 3D multidirectional inclined structures by UV lithography and electroplating. Proceedings IEEE Micro Electro Mechanical Systems An Investigation of Micro Structures, Sensors, Actuators, Machines and Robotic Systems , p. 81-85.
    [32] Jiang, G., Baig, S., & Wang, M. R. (2012). Prism-assisted inclined UV lithography for 3D microstructure fabrication. Journal of Micromechanics and Microengineering, 22(8), 085022.
    [33] Texas Instruments DLP products. Retrieved July 24, 2021, from https://www.ti.com/dlp-chip/getting-started.html
    [34] Refractive index database of Polydimethylsiloxane. Retrieved August 4, 2021, from https://refractiveindex.info/?shelf=organic&book=polydimethylsiloxane&page=Schneider-Sylgard184
    [35] Luminus CBM-80-UVX Product datasheet. Retrieved August 2, 2021, from https://download.luminus.com/datasheets/Luminus_CBM-80-UV_Datasheet.pdf
    [36] 楊聰偉(2018)。光點陣列斜掃描與二維及三維無光罩微影技術。國立成功大學機械工程學系碩士論文,台南市。
    [37] MircoChemicals Optical parameters of photoresists. Retrieved August 2, 2021, from https://www.microchemicals.com/technical_information/photoresists_optical_parameters.pdf

    無法下載圖示 校內:立即公開
    校外:2026-08-12公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE