簡易檢索 / 詳目顯示

研究生: 陳氏賢
HIEN, TRAN THI
論文名稱: Sentinel-2 影像內陸水域大氣校正使用知識蒸餾: 以越南和平水庫為例
Atmospheric Correction of Inland Waters Using Knowledge Distillation For Sentinel-2 Imagery: A Case Study at Hoa Binh Reservoir, Vietnam
指導教授: 林昭宏
Lin, Chao-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 112
中文關鍵詞: 大气校正人工神经网络(ANNs)遥感反射率知识蒸馏Sentinel-2
外文關鍵詞: Atmospheric Correction, Artificial Neural Networks (ANNs), Remote Sensing Reflectance, Knowledge Distillation, Sentinel-2
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 i Abstract iii Acknowledgment v Table of Contents vi List of Tables viii List of Figures ix Chapter 1 Introduction 1 Chapter 2 Background and Related Work 11 2.1 Fundamentals of Radiative Transfer in the Atmosphere Surface 11 2.2 Related Work 14 2.2.1 Image-based atmospheric correction 14 2.2.2 Physical-based atmospheric correction 17 2.2.3 Numerical-based atmospheric correction 21 2.3 Challenges due to physical and bio-optical properties 25 2.3.1 Turbidity and floating object 25 2.3.2 Adjacency effect 28 Chapter 3 Methodology 30 3.1 Data material and pre-processing 30 3.1.1 Top-of-Atmosphere (TOA) Reflectance from Sentinel-2 33 3.1.2 Aerosol Optical Thickness (AOT) from Sentinel-2 Level-2A 35 3.1.3 In-situ Water Surface Reflectance Measurements 38 3.1.4 iCOR Remote Sensing Reflectance Data 43 3.1.5 Data Pre-processing 46 3.2 Knowledge Distillation – based Deep Learning for AC 51 3.2.1 Definition and basic concepts of KD 51 3.2.2 Structure of KD model 52 3.2.3 Training KD model 58 3.2.4 Testing KD model 60 Chapter 4 Experimental Results and Discussions 61 4.1 Experimental Results 61 4.1.1 Evaluation metrics 61 4.1.2 KD model training performance 62 4.1.3 Model testing comparison with other AC models 66 4.1.4 Ratios band evaluation 72 4.1.5 Spatial distribution analysis of atmospheric correction results 74 4.2 Discussions 76 Chapter 5 Conclusions 78 References 80

    Allan, M.G., Hamilton, D.P., Hicks, B.J., Brabyn, L., 2011. Landsat remote sensing of chlorophyll a concentrations in central North Island lakes of New Zealand. Int. J. Remote Sens. 32, 2037–2055. https://doi.org/10.1080/01431161003645840
    Berk, A., Anderson, G.P., Bernstein, L.S., Acharya, P.K., Dothe, H., Matthew, M.W., Adler-Golden, S.M., Chetwynd, Jr., J.H., Richtsmeier, S.C., Pukall, B., Allred, C.L., Jeong, L.S., Hoke, M.L., 1999. MODTRAN4 radiative transfer modeling for atmospheric correction. Opt. Spectrosc. Tech. Instrum. Atmos. Sp. Res. III 3756, 348. https://doi.org/10.1117/12.366388
    Berk, A., Conforti, P., Kennett, R., Perkins, T., Hawes, F., van den Bosch, J., 2014. MODTRAN6: a major upgrade of the MODTRAN radiative transfer code, in: Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XX. SPIE, p. 90880H. https://doi.org/10.1117/12.2050433
    Bernardo, N., Watanabe, F., Rodrigues, T., Alcântara, E., 2017. Atmospheric correction issues for retrieving total suspended matter concentrations in inland waters using OLI/Landsat-8 image. Adv. Sp. Res. 59, 2335–2348. https://doi.org/10.1016/j.asr.2017.02.017
    Bernstein, L.S., Adler-Golden, S.M., Sundberg, R.L., Levine, R.Y., Perkins, T.C., Berk, A., Ratkowski, A.J., Felde, G., Hoke, M.L., 2005. Validation of the QUick atmospheric correction (QUAC) algorithm for VNIR-SWIR multi- and hyperspectral imagery. Algorithms Technol. Multispectral, Hyperspectral, Ultraspectral Imag. XI 5806, 668. https://doi.org/10.1117/12.603359
    Brezonik, P., Menken, K.D., Bauer, M., 2009. Lake and Reservoir Management Landsat-based Remote Sensing of Lake Water Quality Characteristics, Including Chlorophyll and Colored Dissolved Organic Matter (CDOM). Taylor Fr. 21, 373–382. https://doi.org/10.1080/07438140509354442
    Brezonik, P., Olmanson, L., … J.F.-R.S. of, 2015, undefined, n.d. Factors affecting the measurement of CDOM by remote sensing of optically complex inland waters. Elsevier.
    Budd, J.W., Drummer, T.D., Nalepa, T.F., Fahnenstiel, G.L., 2001. Remote sensing of biotic effects: Zebra mussels (Dreissena polymorpha) influence on water clarity in Saginaw Bay, Lake Huron, Limnol. Oceanogr.
    Bue, B.D., Thompson, D.R., Deshpande, S., Eastwood, M., Green, R.O., Mullen, T., Natraj, V., Parente, M., 2019. Neural Network Radiative Transfer for Imaging Spectroscopy. Atmos. Meas. Tech. Discuss. 1–16. https://doi.org/10.5194/amt-2018-436
    Callieco, F., Dell’Acqua, F., 2011. A comparison between two radiative transfer models for atmospheric correction over a wide range of wavelengths. Int. J. Remote Sens. 32, 1357–1370. https://doi.org/10.1080/01431160903547999
    Chavez, P.S., n.d. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Elsevier. https://doi.org/10.1016/0034-4257(88)90019-3
    Chavez, P.S., n.d. Image-Based Atmospheric Corrections - Revisited and Improved, asprs.org.
    Chen, J., Zhu, W., Tian, Y. Q., Yu, Q., Zheng, Y., & Huang, L. (2017). Remote estimation of colored dissolved organic matter and chlorophyll-a in Lake Huron using Sentinel-2 measurements. Journal of Applied Remote Sensing, 11(3), 036007-036007.
    Chen, L., Zhang, G., Xu, Y.J., Chen, S., Wu, Y., Gao, Z., Yu, H., 2020. Human activities and climate variability affecting inland water surface area in a high latitude river basin. Water (Switzerland) 12. https://doi.org/10.3390/w12020382
    Chen, Q., Yu, R., Hao, Y., Wu, L., Zhang, W., Zhang, Q., Bu, X., n.d. A New Method for Mapping Aquatic Vegetation Especially Underwater Vegetation in Lake Ulansuhai Using GF-1 Satellite Data. https://doi.org/10.3390/rs10081279
    Clark, D.K., Gordon, H.R., Voss, K.J., Ge, Y., Broenkow, W., Trees, C., 1997. Validation of atmospheric correction over the oceans, JOURNAL OF GEOPHYSICAL RESEARCH. Blackwell Publishing Ltd. https://doi.org/10.1029/96JD03345
    Dalu, T., Dube, T., Froneman, P.W., Sachikonye, M.T.B., Clegg, B.W., Nhiwatiwa, T., 2015. Geocarto International An assessment of chlorophyll-a concentration spatio-temporal variation using Landsat satellite data, in a small tropical reservoir. Taylor Fr. 30, 1130–1143. https://doi.org/10.1080/10106049.2015.1027292
    De Keukelaere, L, Sterckx, S., Adriaensen, S., Knaeps, E., Reusen, I., Giardino, C., Bresciani, M., Hunter, P., Neil, C., Van Der Zande, D., Vaiciute, & D., 2018. European Journal of Remote Sensing Atmospheric correction of Landsat-8/OLI and Sentinel-2/MSI data using iCOR algorithm: validation for coastal and inland waters. Taylor Fr. 51, 525–542. https://doi.org/10.1080/22797254.2018.1457937
    Deines, A.M., Bunnell, D.B., Rogers, M.W., Bennion, D., Woelmer, W., Sayers, M.J., Grimm, A.G., Shuchman, R.A., Raymer, Z.B., Brooks, C.N., Mychek-Londer, J.G., Taylor, W., Douglas Beard Jr, T., 2017. The contribution of lakes to global inland fisheries harvest. Front Ecol Env. 15, 293–298. https://doi.org/10.1002/fee.1503
    Doerffer, R., & Fischer, J. (1994). Concentrations of chlorophyll, suspended matter, and gelbstoff in case II waters derived from satellite coastal zone color scanner data with inverse modeling methods. Journal of Geophysical Research: Oceans, 99(C4), 7457-7466.
    Doxaran, D., Froidefond, J. M., & Castaing, P. (2003). Remote-sensing reflectance of turbid sediment-dominated waters. Reduction of sediment type variations and changing illumination conditions effects by use of reflectance ratios. Applied Optics, 42(15), 2623-2634.
    Duan, S. B., Li, Z. L., Li, H., Göttsche, F. M., Wu, H., Zhao, W., ... & Coll, C. (2019). Validation of Collection 6 MODIS land surface temperature product using in situ measurements. Remote sensing of environment, 225, 16-29.
    Duffy, K., Vandal, T. J., Wang, W., Nemani, R. R., & Ganguly, A. R. (2022). A framework for deep learning emulation of numerical models with a case study in satellite remote sensing. IEEE Transactions on Neural Networks and Learning Systems, 34(7), 3345-3356.
    Duffy, K., Vandal, T., Li, S., Ganguly, S., Nemani, R., & Ganguly, A. R. (2019). DeepEmSat: deep emulation for satellite data mining. Frontiers in big Data, 2, 42.
    Duffy, K., Vandal, T., Wang, W., Nemani, R., Ganguly, A.R., 2019. Deep learning emulation of multi-angle implementation of atmospheric correction (MAIAC). arXiv 1–10.
    Emde, C., Buras-Schnell, R., Kylling, A., Mayer, B., Gasteiger, J., Hamann, U., Kylling, J., Richter, B., Pause, C., Dowling, T., Bugliaro, L., 2016. The libRadtran software package for radiative transfer calculations (version 2.0.1). Geosci. Model Dev 9, 1647–1672. https://doi.org/10.5194/gmd-9-1647-2016
    ENVI, 2009. ENVI Atmospheric Correction Module: QUAC and FLAASH user’s guide. Modul. Version 44.
    Fan, Y., Li, W., Chen, N., Ahn, J. H., Park, Y. J., Kratzer, S., ... & Stamnes, K. (2021). OC-SMART: A machine learning based data analysis platform for satellite ocean color sensors. Remote Sensing of Environment, 253, 112236.
    Fan, Y., Li, W., Gatebe, C. K., Jamet, C., Zibordi, G., Schroeder, T., & Stamnes, K. (2017). Atmospheric correction over coastal waters using multilayer neural networks. Remote Sensing of Environment, 199, 218-240.
    Fan, Y., Li, W., Gatebe, C., Jamet, C., … G.Z.-R.S. of, 2017, undefined, n.d. Atmospheric correction over coastal waters using multilayer neural networks. Elsevier.
    Fan, Y., Li, W., Gatebe, C.K., Jamet, C., Zibordi, G., Schroeder, T., Stamnes, K., 2017. Atmospheric correction over coastal waters using multilayer neural networks. Remote Sens. Environ. 199, 218–240. https://doi.org/10.1016/j.rse.2017.07.016
    Gao, B.-C., Montes, M.J., Ahmad, Z., Davis, C.O., 2000. Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space, osapublishing.org.
    GeethaNK, SekarP, n.d. Numerical Methods-Engineering Applications.
    Gordon, H. R. (1978). Removal of atmospheric effects from satellite imagery of the oceans. Applied Optics, 17(10), 1631-1636.
    Gordon, H. R., & Clark, D. K. (1981). Clear water radiances for atmospheric correction of coastal zone color scanner imagery. Applied optics, 20(24), 4175-4180.
    Gordon, H. R., & Wang, M., 1994. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm. Appl. Opt. 33, 443. https://doi.org/10.1364/ao.33.000443
    Griffin, C., McClelland, J., Frey, K., … G.F.-R.S. of, 2018, undefined, n.d. Quantifying CDOM and DOC in major Arctic rivers during ice-free conditions using Landsat TM and ETM+ data. Elsevier.
    Griffin, C.G., Frey, K.E., Rogan, J., Holmes, R.M., 2011. Spatial and interannual variability of dissolved organic matter in the Kolyma River, East Siberia, observed using satellite imagery. Wiley Online Libr. 116. https://doi.org/10.1029/2010JG001634
    Guanter, L., 2006. New algorithms for atmospheric correction and retrieval of biophysical parameters in Earth Observation . Application to ENVISAT / MERIS data 285.
    Guanter, L., Del Carmen González-Sanpedro, M., Moreno, J., Del Carmen Gonza, M., 2010b. International Journal of Remote Sensing A method for the atmospheric correction of ENVISAT/MERIS data over land targets A method for the atmospheric correction of ENVISAT/MERIS data over land targets. https://doi.org/10.1080/01431160600815525
    Guanter, L., González-Sanpedro, M.D.C., Moreno, J., 2007. A method for the atmospheric correction of ENVISAT/MERIS data over land targets. Int. J. Remote Sens. 28, 709–728. https://doi.org/10.1080/01431160600815525
    Guanter, L., Ruiz-Verdú, A., … D.O.-R.S. of, 2010, undefined, n.d. Atmospheric correction of ENVISAT/MERIS data over inland waters: Validation for European lakes. Elsevier.
    Hagolle, O., Huc, M., Pascual, D.V., Dedieu, G., 2015. A Multi-Temporal and Multi-Spectral Method to Estimate Aerosol Optical Thickness over Land, for the Atmospheric Correction of FormoSat-2, LandSat, VENµS and Sentinel-2 Images. mdpi.com 7, 2669. https://doi.org/10.3390/rs70302668
    Heo, J., Jung, J., Kim, B., & Han, S. (2020). Digital elevation model-based convolutional neural network modeling for searching of high solar energy regions. Applied energy, 262, 114588.
    Hovis, W. A., & Leung, K. C. (1977). Remote sensing of ocean color. Optical Engineering, 16(2), 158-166.
    Hu, C., Carder, K. L., & Muller-Karger, F. E. (2000). Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method. Remote sensing of environment, 74(2), 195-206.
    Huimei Ding, L., Shi, J., Wang, Y., Wei, L., Ding, H., 2015. An improved dark-object subtraction technique for atmospheric correction of Landsat 8 Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 18 Mar 2021 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use An improv. spiedigitallibrary.org 9815, 98150K. https://doi.org/10.1117/12.2205567
    Iafe, A.D., 2012. SIMEC Background : Workflow 5–8.
    Ilori, C., Pahlevan, N., Knudby, A., 2019. Analyzing Performances of Different Atmospheric Correction Techniques for Landsat 8: Application for Coastal Remote Sensing. Remote Sens. 11, 469. https://doi.org/10.3390/rs11040469
    Imen, S., Chang, N. Bin, Yang, Y.J., 2015. Developing the remote sensing-based early warning system for monitoring TSS concentrations in Lake Mead. J. Environ. Manage. 160, 73–89. https://doi.org/10.1016/j.jenvman.2015.06.003
    Improving the Water Quality of Lake Toba, Indonesia, 2018. . Improv. Water Qual. Lake Toba, Indones. https://doi.org/10.1596/32196
    Iqbal, M., 2012. An introduction to solar radiation.
    Jajarmi, A., Ghanbari, B., Baleanu, D., 2019. A new and efficient numerical method for the fractional modeling and optimal control of diabetes and tuberculosis co-existence. Chaos 29. https://doi.org/10.1063/1.5112177
    Kleynhans, T., Montanaro, M., Gerace, A., Kanan, C., 2017. Predicting top-of-atmosphere thermal radiance using MERRA-2 atmospheric data with deep learning. Remote Sens. 9, 1–16. https://doi.org/10.3390/rs9111133
    Kloiber, S., Brezonik, P., … L.O.-R. sensing of, 2002, undefined, n.d. A procedure for regional lake water clarity assessment using Landsat multispectral data. Elsevier.
    Knaeps, E., Dogliotti, A. I., Raymaekers, D., Ruddick, K., & Sterckx, S. (2012). In situ evidence of non-zero reflectance in the OLCI 1020 nm band for a turbid estuary. Remote Sensing of Environment, 120, 133-144.
    Kotchenova, S.Y., Vermote, E.F., Levy, R., Lyapustin, A., 2008. Radiative transfer codes for atmospheric correction and aerosol retrieval: Intercomparison study. Appl. Opt. 47, 2215–2226. https://doi.org/10.1364/AO.47.002215
    Kravitz, J., Matthews, M., Bernard, S., Griffith, D., 2020. Application of Sentinel 3 OLCI for chl-a retrieval over small inland water targets: Successes and challenges. Remote Sens. Environ. 237. https://doi.org/10.1016/j.rse.2019.111562
    Kuhn, C., de Matos Valerio, A., Ward, N., Loken, L., Sawakuchi, H.O., Kampel, M., Richey, J., Stadler, P., Crawford, J., Striegl, R., Vermote, E., Pahlevan, N., Butman, D., 2019. Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity. Remote Sens. Environ. 224, 104–118. https://doi.org/10.1016/j.rse.2019.01.023
    Kutser, T. (2004). Quantitative detection of chlorophyll in cyanobacterial blooms by satellite remote sensing. Limnology and Oceanography, 49(6), 2179-2189.
    Kutser, T., Pierson, D., Kallio, K., … A.R.-R.S. of, 2005, undefined, n.d. Mapping lake CDOM by satellite remote sensing. Elsevier.
    Kutser, T., Pierson, D.C., Tranvik, L., Reinart, A., Sobek, S., Kallio, K., 2005. Using satellite remote sensing to estimate the colored dissolved organic matter absorption coefficient in lakes. Ecosystems 8, 709–720. https://doi.org/10.1007/s10021-003-0148-6
    Landsat 8-9 Operational Land Imager (OLI) - Thermal Infrared Sensor (TIRS) Collection 2 Level 1 (L1) Data Format Control Book (DFCB), 2020.
    Lantzanakis, G., Mitraka, Z., Chrysoulakis, N., 2017. Comparison of Physically and Image Based Atmospheric Correction Methods for Sentinel-2 Satellite Imagery. Springer, Cham, pp. 255–261. https://doi.org/10.1007/978-3-319-35095-0_36
    Lavender, S.J., Pinkerton, M.H., Moore, G.F., Aiken, J., Blondeau-Patissier, D., 2005. Modification to the atmospheric correction of SeaWiFS ocean colour images over turbid waters Centre for Observation of Air-Sea Interactions and Fluxes (CASIX). Cont. Shelf Res. 25, 539–555. https://doi.org/10.1016/j.csr.2004.10.007
    Li, F., Jupp, D., Sagar, S., Schroeder, T., 2019. ATMOSPHERIC CORRECTION AND WATER SURFACE ISSUES FOR AQUATIC APPLICATIONS OF LANDSAT 8 National Earth and Marine Observations , Geoscience Australia , GPO Box 378 , ACT 2601 , Australia CSIRO Land and Water , GPO Box 3023 , ACT 2601 , Australia CSIRO Ocean. IGARSS 2019 - 2019 IEEE Int. Geosci. Remote Sens. Symp. 6899–6902.
    Li, F., Jupp, D.L.B., Sagar, S., Wang, L.W., Coghlan, R., 2017. Atmospheric correction for a Landsat and Sentinel-2 product over water surfaces. Proc. - 22nd Int. Congr. Model. Simulation, MODSIM 2017 971–977. https://doi.org/10.36334/modsim.2017.g9.li
    Li, H., He, X., Bai, Y., Shanmugam, P., Park, Y. J., Liu, J., ... & Huang, H. (2020). Atmospheric correction of geostationary satellite ocean color data under high solar zenith angles in open oceans. Remote Sensing of Environment, 249, 112022.
    Li, S., Song, K., Li, Y., Liu, G., Wen, Z., Shang, Y., ... & Fang, C. (2023). Performances of atmospheric correction processors for sentinel-2 MSI imagery over typical lakes across China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, 2065-2078.
    Li, Z., Roy, D.P., Zhang, H.K., Vermote, E.F., Huang, H., 2019. Evaluation of Landsat-8 and Sentinel-2A aerosol optical depth retrievals across Chinese cities and implications for medium spatial resolution urban aerosol monitoring. Remote Sens. 11, 1–14. https://doi.org/10.3390/rs11020122
    Liu, A., Liu, L., Liu, X., 2016. A new atmospheric correction method based on ANN in hyperspectral remote sensing image. 4th Int. Work. Earth Obs. Remote Sens. Appl. EORSA 2016 - Proc. 57–61. https://doi.org/10.1109/EORSA.2016.7552766
    Lu, Z., Li, J., Shen, Q., Zhang, B., Zhang, H., Zhang, F., Wang, S., 2018. Modification of 6SV to remove skylight reflected at the air-water interface: Application to atmospheric correction of Landsat 8 OLI imagery in inland waters. PLoS One 13, e0202883. https://doi.org/10.1371/journal.pone.0202883
    Lyapustin, A.I., Wang, Y., Laszlo, I., Hilker, T., G.Hall, F., Sellers, P.J., Tucker, C.J., Korkin, S. V., 2012. Multi-angle implementation of atmospheric correction for MODIS (MAIAC): 3. Atmospheric correction. Remote Sens. Environ. 127, 385–393. https://doi.org/10.1016/j.rse.2012.09.002
    Mayer, B., Kylling, A., 2005. Technical note: The libRadtran software package for radiative transfer calculations - Description and examples of use. Atmos. Chem. Phys. https://doi.org/10.5194/acp-5-1855-2005
    McCullough, I.M., Cheruvelil, K.S., Collins, S.M., Soranno, P.A., 2019. Geographic patterns of the climate sensitivity of lakes. Ecol. Appl. 29, e01836. https://doi.org/10.1002/eap.1836
    Men, J., Feng, L., Chen, X., & Tian, L. (2023). Atmospheric correction under cloud edge effects for Geostationary Ocean Color Imager through deep learning. ISPRS Journal of Photogrammetry and Remote Sensing, 201, 38-53.
    Men, J., Liu, J., Xia, G., Yue, T., Tong, R., Tian, L., ... & Wang, L. (2022). Atmospheric correction for HY-1C CZI images using neural network in western Pacific region. Geo-spatial Information Science, 25(3), 476-488.
    Men, J., Tian, L., Zhao, D., Wei, J., & Feng, L. (2022). Development of a deep learning-based atmospheric correction algorithm for oligotrophic oceans. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-19.
    Menken, K.D., Brezonik, P.L., Bauer, M.E., 2009. Lake and Reservoir Management Influence of Chlorophyll and Colored Dissolved Organic Matter (CDOM) on Lake Reflectance Spectra: Implications for Measuring Lake Properties by Remote Sensing. Taylor Fr. 22, 179–190. https://doi.org/10.1080/07438140609353895
    Mishra, D.R., Ogashawara, I., Gitelson, A.A., 2017. Bio-optical Modeling and Remote Sensing of Inland Waters, Bio-optical Modeling and Remote Sensing of Inland Waters.
    Mishra, S., Environment, D.M.-R.S. of, 2012, undefined, n.d. Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters. Elsevier.
    Mobley, C. D. (1999). Estimation of the remote-sensing reflectance from above-surface measurements. Applied Optics, 38(36), 7442-7455.
    Mooney, H.A., 2005. AND HUMAN WELL-BEING.
    Moses, W. J., Ackleson, S. G., Hair, J. W., Hostetler, C. A., & Miller, W. D. (2016). Spatial scales of optical variability in the coastal ocean: Implications for remote sensing and in situ sampling. Journal of Geophysical Research: Oceans, 121(6), 4194-4208.
    Moses, W. J., Gitelson, A. A., Berdnikov, S., & Povazhnyy, V. (2009). Estimation of chlorophyll-a concentration in case II waters using MODIS and MERISdata successes and challenges. Environmental research letters, 4(4), 045005.
    Mueller, J. L., Morel, A., Frouin, R., Davis, C., Arnone, R., Carder, K., ... & Voss, K. (2003). Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 4. Volume III: Radiometric Measurements and Data Analysis Protocols.
    Nurgiantoro, Muliddin, Kurniadin, N., Putra, A.Y.S.I., Azharuddin, M., Hasan, J., Hardianto, Langumadi, M.I.Y., 2019. Assessment of atmospheric correction results by iCOR for MSI and OLI data on TSS concentration. IOP Conf. Ser. Earth Environ. Sci. 389. https://doi.org/10.1088/1755-1315/389/1/012001
    Pahlevan, N., Mangin, A., Balasubramanian, S. V, Smith, B., Alikas, K., Arai, K., Barbosa, C., Simon, B., Binding, C., Bresciani, M., Giardino, C., Gurlin, D., Fan, Y., Harmel, T., Hunter, P., Ishikaza, J., Kratzer, S., Lehmann, M.K., Ligi, M., Ma, R., Olmanson, L., Oppelt, N., Pan, Y., Peters, S., Reynaud, N., Sander, L.A., Carvalho, D., Simis, S., Spyrakos, E., Steinmetz, F., Stelzer, K., Sterckx, S., Tormos, T., Tyler, A., Vanhellemont, Q., Warren, M., 2021. Remote Sensing of Environment ACIX-Aqua : A global assessment of atmospheric correction methods for Landsat-8 and Sentinel-2 over lakes , rivers , and coastal waters 258. https://doi.org/10.1016/j.rse.2021.112366
    Palmer, S., Kutser, T., Hunter, P., 2015. Remote sensing of inland waters: Challenges, progress and future directions.
    Peskin, C.S., 1972. Flow patterns around heart valves: A numerical method. J. Comput. Phys. 10, 252–271. https://doi.org/10.1016/0021-9991(72)90065-4
    Pu, F., Ding, C., Chao, Z., Yu, Y., Xu, X., 2019. Water-Quality Classification of Inland Lakes Using Landsat8 Images by Convolutional Neural Networks. mdpi.com 11, 1674. https://doi.org/10.3390/rs11141674
    Reinersman, P. N., & Carder, K. L. (1995). Monte Carlo simulation of the atmospheric point-spread function with an application to correction for the adjacency effect. Applied optics, 34(21), 4453-4471.
    Remote, H.T.-I.T. on G. and, 2001, undefined, n.d. An atmospheric correction algorithm for thermal infrared multispectral data over land-a water-vapor scaling method. ieeexplore.ieee.org.
    Rinke, K., Keller, P.S., Kong, X., Borchardt, D., Weitere, M., 2019. Ecosystem Services from Inland Waters and Their Aquatic Ecosystems, in: Atlas of Ecosystem Services. Springer International Publishing, pp. 191–195. https://doi.org/10.1007/978-3-319-96229-0_30
    Ritchie, J.C., Zimba, P. V, Everitt, J.H., 2003. Remote Sensing Techniques to Assess Water Quality, ingentaconnect.com.
    Ruddick, K. G., Ovidio, F., & Rijkeboer, M. (2000). Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters. Applied optics, 39(6), 897-912.
    Ruddick, K.G., De Cauwer, V., Park, Y.-J., Moore, G., 2006. Ruddick, Kevin G., Vera De Cauwer, Young-Je Park, and Gerald Moore. Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters. Limnol. Oceanogr., 51(2), 2006, 1167–1179, Limnol. Oceanogr.
    Santer, R., & Schmechtig, C. (2000). Adjacency effects on water surfaces: primary scattering approximation and sensitivity study. Applied optics, 39(3), 361-375.
    Schroeder, T., Behnert, I., Schaale, M., Fischer, J., Doerffer, R., Schroeder, T.H., Behnert{, I., Schaale{, M., Fischer{, J., Doerffer{, R., 2007. International Journal of Remote Sensing Atmospheric correction algorithm for MERIS above case-2 waters Atmospheric correction algorithm for MERIS above case-2 waters. Int. J. Remote Sens. 28, 1469–1486. https://doi.org/10.1080/01431160600962574
    Schroeder, T., Fischer, J., Schaale, M., Fell, F., 2003. Artificial-neural-network-based atmospheric correction algorithm: application to MERIS data. Ocean Remote Sens. Appl. 4892, 124. https://doi.org/10.1117/12.467293
    Sharma, A., Liu, X., Yang, X., Shi, D., 2017. A patch-based convolutional neural network for remote sensing image classification. Neural Networks 95, 19–28. https://doi.org/10.1016/j.neunet.2017.07.017
    Shi, W., & Wang, M. (2009). An assessment of the black ocean pixel assumption for MODIS SWIR bands. Remote Sensing of Environment, 113(8), 1587-1597.
    Siegel, D. A., Wang, M., Maritorena, S., & Robinson, W. (2000). Atmospheric correction of satellite ocean color imagery: the black pixel assumption. Applied optics, 39(21), 3582-3591.
    Sivakumar, M.V.K., Roy, P.S., Harmsen, K., Saha, S.K., 2003. Satellite Remote Sensing and GIS Applications in Agricultural Meteorology World Meteorological Organization (WMO) India Meteorological Department (IMD) Centre for Space Science and Technology Education in Asia and the Pacific (CSSTEAP) Indian Institute of Remote Sensing (IIRS) National Remote Sensing Agency (NRSA) and Space Application Centre (SAC).
    Song, K., Li, L., Xu, J., 2011. Retrieval of total suspended matter (TSM) and chlorophyll-a (Chl-a) concentration from remote-sensing data for drinking water resources. Artic. Environ. Monit. Assess. 184, 1449–1470. https://doi.org/10.1007/s10661-011-2053-3
    Song, L., Bi, X., Zhang, Z., Li, L., Dai, Q., Zhang, W., ... & Feng, Y. (2022). Impact of sand and dust storms on the atmospheric environment and its source in Tianjin-China. Science of The Total Environment, 825, 153980.
    Song, Z., He, X., Bai, Y., Dong, X., Wang, D., Li, T., ... & Gong, F. (2023). Atmospheric correction of absorbing aerosols for satellite ocean color remote sensing over coastal waters. Remote Sensing of Environment, 290, 113552.
    Spyrakos, E., O’Donnell, R., Hunter, P.D., Miller, C., Scott, M., Simis, S.G.H., Neil, C., Barbosa, C.C.F., Binding, C.E., Bradt, S., Bresciani, M., Dall’Olmo, G., Giardino, C., Gitelson, A.A., Kutser, T., Li, L., Matsushita, B., Martinez-Vicente, V., Matthews, M.W., Ogashawara, I., Ruiz-Verdú, A., Schalles, J.F., Tebbs, E., Zhang, Y., Tyler, A.N., 2018. Optical types of inland and coastal waters. Limnol. Oceanogr. 63, 846–870. https://doi.org/10.1002/lno.10674
    Steinmetz, F., Ramon, D., 2018. Sentinel-2 MSI and Sentinel-3 OLCI consistent ocean colour products using POLYMER, in: Frouin, R.J., Murakami, H. (Eds.), Remote Sensing of the Open and Coastal Ocean and Inland Waters. SPIE, p. 13. https://doi.org/10.1117/12.2500232
    Sterckx, S., Knaeps, E., Adriaensen, S., Reusen, I., De Keukelaere, L., Hunter, P., Giardino, C., Odermatt, D., n.d. OPERA : AN ATMOSPHERIC CORRECTION FOR LAND AND WATER, odnature.naturalsciences.be.
    Sterckx, S., Knaeps, E., Ruddick, K., Kratzer, S., Ruescas, A., 2013. Validation SIMEC adjacency correction for Coastal and Inland Waters 225–226.
    Sterckx, S., Knaeps, S., Kratzer, S., Ruddick, K., 2015. SIMilarity Environment Correction (SIMEC) applied to MERIS data over inland and coastal waters. Remote Sens. Environ. 157, 96–110. https://doi.org/10.1016/j.rse.2014.06.017
    Sterckx, Sindy, Knaeps, E., Adriaensen, S., Reusen, I., Keukelaere, L. De, Hunter, P., 2015. Opera : an Atmospheric Correction for Land and Water. Proc. Sentin. Sci. Work. 3–6.
    Sun, J., Xu, F., Cervone, G., Gervais, M., Wauthier, C., & Salvador, M. (2021). Automatic atmospheric correction for shortwave hyperspectral remote sensing data using a time-dependent deep neural network. ISPRS Journal of Photogrammetry and Remote Sensing, 174, 117-131.
    Sun, Z., Chang, N. B., Chen, C. F., Mostafiz, C., & Gao, W. (2021). Ensemble learning via higher order singular value decomposition for integrating data and classifier fusion in water quality monitoring. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 3345-3360.
    Syariz, M.A., Lin, C.H., Van Nguyen, M., Jaelani, L.M., Blanco, A.C., 2020. WaterNet: A convolutional neural network for chlorophyll-a concentration retrieval. Remote Sens. 12, 1–16. https://doi.org/10.3390/rs12121966
    Synthesis, H., n.d. ECOSYSTEMS AND HUMAN WELL-BEING.
    Tang, F., Ohto, T., Sun, S., Rouxel, J. R., Imoto, S., Backus, E. H., ... & Nagata, Y. (2020). Molecular structure and modeling of water–air and ice–air interfaces monitored by sum-frequency generation. Chemical Reviews, 120(8), 3633-3667.
    Tanre, D., Herman, M., & Deschamps, P. Y. (1981). Influence of the background contribution upon space measurements of ground reflectance. Applied Optics, 20(20), 3676-3684.
    Tempfli, K., Kerle, N., Huurneman, G.C., Janssen, L.L.F., Bakker, W.H., Feringa, W., Gieske, A.S.M., Gorte, B.G.H., Grabmaier, K.A., Hecker, C.A., Horn, J.A., Huurneman, G.C., Janssen, L.L.F., Kerle, N., Meer, F.D. Van Der, Parodi, G.N., Pohl, C., Reeves, C. V, Ruitenbeek, F.J. Van, Schetselaar, E.M., Tempfli, K., Weir, M.J.C., Westinga, E., Woldai, T., 2013. AGERE! 2013 - Proceedings of the 2013 ACM Workshop on Programming Based on Actors, Agents, and Decentralized Control. AGERE! 2013 - Proc. 2013 ACM Work. Program. Based Actors, Agents, Decentralized Control.
    Themistocleous, K., Hadjimitsis, D.G., Retalis, A., Chrysoulakis, N., 2012. Development of a new image based atmospheric correction algorithm for aerosol optical thickness retrieval using the darkest pixel method. spiedigitallibrary.org. https://doi.org/10.1117/1.JRS.6.063538
    Tian et al., 2014 X. Tian, Q. Zeng, Z. Wang, X. Sun Atmospheric correction of GOCI imagery over turbid waters in Bohai Sea based on artificial neural network J. Hubei Univ. Sci., 36 (2014), pp. 370-374, 10.3969/j.issn.1000-2375.2014.04.017
    Tran, M. D., Vantrepotte, V., Loisel, H., Oliveira, E. N., Tran, K. T., Jorge, D., ... & Paranhos, R. (2023). Band ratios combination for estimating chlorophyll-a from sentinel-2 and sentinel-3 in coastal waters. Remote Sensing, 15(6), 1653.
    Tsagkatakis, G., Aidini, A., Fotiadou, K., Giannopoulos, M., Pentari, A., Tsakalides, P., 2019. Survey of deep-learning approaches for remote sensing observation enhancement. Sensors (Switzerland) 19, 1–39. https://doi.org/10.3390/s19183929
    U.S. Geological Survey, 2016. Landsat 8 Data Users Handbook. Nasa 8, 97.
    Väisänen, T., Markkanen, J., Penttilä, A., Muinonen, K., 2019. Radiative transfer with reciprocal transactions: Numerical method and its implementation. PLoS One 14. https://doi.org/10.1371/journal.pone.0210155
    Van Mol, B., & Ruddick, K. (2005, March). Total Suspended Matter maps from CHRIS imagery of a small inland water body in Oostende (Belgium). In Proceedings of the 3rd ESA CHRIS/Proba Workshop (pp. 21-23).
    Vanhellemont, Q., 2019. Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the Landsat and Sentinel-2 archives. Remote Sens. Environ. 225, 175–192. https://doi.org/10.1016/j.rse.2019.03.010
    Vanhellemont, Q., Ruddick, K., 2015. Advantages of high quality SWIR bands for ocean colour processing: Examples from Landsat-8. Remote Sens. Environ. 161, 89–106. https://doi.org/10.1016/j.rse.2015.02.007
    Vanhellemont, Q., Ruddick, K., 2016. ACOLITE FOR SENTINEL-2: AQUATIC APPLICATIONS OF MSI IMAGERY, ESA Special Publication SP.
    Vanhellemont, Q., Ruddick, K., 2018. Atmospheric correction of metre-scale optical satellite data for inland and coastal water applications. Remote Sens. Environ. 216, 586–597. https://doi.org/10.1016/j.rse.2018.07.015
    Vermote, E., Research, S.K.-J. of G., 2008, undefined, n.d. Atmospheric correction for the monitoring of land surfaces. Wiley Online Libr.
    Vermote, E.F., El Saleous, N., Justice, C.O., Kaufman, Y.J., Privette, J.L., Remer, L., Roger, J.C., Tanr, D., 1997. Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: Background, operational algorithm and validation, Wiley Online Library. https://doi.org/10.1029/97JD00201
    Vermote, E.F., Kotchenova, S., 2008. Atmospheric correction for the monitoring of land surfaces. J. Geophys. Res. Atmos. 113. https://doi.org/10.1029/2007JD009662
    Verrelst, J., Vicent, J., Rivera-Caicedo, J.P., Lumbierres, M., Morcillo-Pallarés, P., Moreno, J., 2019. Global Sensitivity Analysis of Leaf-Canopy-Atmosphere RTMs: Implications for Biophysical Variables Retrieval from Top-of-Atmosphere Radiance Data. Remote Sens. 11, 1923. https://doi.org/10.3390/rs11161923
    Vicent, J., Sabater, N., Verrelst, J., Alonso, L., Moreno, J., 2017. Assessment of Approximations in Aerosol Optical Properties and Vertical Distribution into FLEX Atmospherically-Corrected Surface Reflectance and Retrieved Sun-Induced Fluorescence. Remote Sens. 9, 675. https://doi.org/10.3390/rs9070675
    Vicent, J., Verrelst, J., Sabater, N., Alonso, L., Pablo Rivera-Caicedo, J., Martino, L., Muñoz-Marí, J., Moreno, J., 2020. Comparative analysis of atmospheric radiative transfer models using the Atmospheric Look-up table Generator (ALG) toolbox (version 2.0). Geosci. Model Dev. 13, 1945–1957. https://doi.org/10.5194/gmd-13-1945-2020
    VITO Remote Sensing Unit, 2019. iCOR Landsat-8 and Sentinel-2 plugin for SNAP toolbox: Software User Manual. 05/02/2019 1–21.
    Wang, D., Ma, R., Xue, K., Loiselle, S.A., 2019. The assessment of landsat-8 OLI atmospheric correction algorithms for inland waters. Remote Sens. 11. https://doi.org/10.3390/rs11020169
    Wang, F., Zhou, B., Xu, J., Song, L., & Wang, X. (2009). Application of neural network and MODIS 250m imagery for estimating suspended sediments concentration in Hangzhou Bay, China. Environmental Geology, 56(6), 1093-1101.
    Wang, M., & Shi, W. (2005). Estimation of ocean contribution at the MODIS near‐infrared wavelengths along the east coast of the US: Two case studies. Geophysical research letters, 32(13).
    Wang, M., Shi, W., & Tang, J. (2011). Water property monitoring and assessment for China's inland Lake Taihu from MODIS-Aqua measurements. Remote Sensing of Environment, 115(3), 841-854.
    Wang, X., Mao, Z., Sciences, J.C.-J. of M., 2011, undefined, n.d. Atmospheric correction of the SPOT satellite data of the coastal zones. en.cnki.com.cn.
    Wang, Z., Sun, T., Hu, K., Zhang, Y., Yu, X., & Li, Y. (2022). A deep learning semantic segmentation method for landslide scene based on transformer architecture. Sustainability, 14(23), 16311.
    Warren, M.A., Simis, S.G.H., Martinez-Vicente, V., Poser, K., Bresciani, M., Alikas, K., Spyrakos, E., Giardino, C., Ansper, A., 2019. Assessment of atmospheric correction algorithms for the Sentinel-2A MultiSpectral Imager over coastal and inland waters. Remote Sens. Environ. 225, 267–289. https://doi.org/10.1016/j.rse.2019.03.018
    West, B.J., Brueckner, K.A., Janda, R.S., Milder, D.M., Milton, R.L., 1987. A new numerical method for surface hydrodynamics. J. Geophys. Res. 92, 11803. https://doi.org/10.1029/JC092iC11p11803
    Wójtowicz, M., Wójtowicz, A., Piekarczyk, J., 2016. Application of remote sensing methods in agriculture. Commun. Biometry Crop Sci. 11, 31–50.
    Xu, F., Cervone, G., Franch, G., Salvador, M., 2020. Multiple geometry atmospheric correction for image spectroscopy using deep learning. J. Appl. Remote Sens. 14, 1. https://doi.org/10.1117/1.jrs.14.024518
    Zahidi, U.A., Chatterjee, A., Yuen, P.W.T., 2019. A Radiative Transfer Model-Based Multi-Layered Regression Learning to Estimate Shadow Map in Hyperspectral Images. Mach. Learn. Knowl. Extr. 1, 904–927. https://doi.org/10.3390/make1030052
    Zhang, H., Yang, X., Xu, D., 2019. A high-order numerical method for solving the 2D fourth-order reaction-diffusion equation. Numer. Algorithms 80, 849–877. https://doi.org/10.1007/s11075-018-0509-z
    Zhang, Z., He, G., Wang, X., 2010. International Journal of Remote Sensing A practical DOS model-based atmospheric correction algorithm A practical DOS model-based atmospheric correction algorithm. Taylor Fr. 31, 2837–2852. https://doi.org/10.1080/01431160903124682
    Zhong, Y., Li, W., Wang, X., Jin, S., & Zhang, L. (2020). Satellite-ground integrated destriping network: A new perspective for EO-1 Hyperion and Chinese hyperspectral satellite datasets. Remote sensing of environment, 237, 111416.
    Zhou, M., Zhang, L., Chen, D., Gu, Y., Fu, T.-M., Gao, M., Zhao, Y., Lu, X., Zhao, B., 2019. LETTER • OPEN ACCESS Recent citations The impact of aerosol-radiation interactions on the effectiveness of emission control measures. https://doi.org/10.1088/1748-9326/aaf27d
    Zhou, W., Wang, S., Zhou, Y., Troy, & A., 2006. Mapping the concentrations of total suspended matter in Lake Taihu, China, using Landsat-5 TM data. Int. J. Remote Sens. 27, 1177–1191. https://doi.org/10.1080/01431160500353825

    無法下載圖示 校內:2028-07-25公開
    校外:2028-07-25公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE