| 研究生: |
廖思婷 Liao, Si-Ting |
|---|---|
| 論文名稱: |
整合模內貼標設備自動化系統之生產良率提升研究 Yield Improvement of Integrated In Mold Labeling Equipment Automation System |
| 指導教授: |
蕭世文
Hsiao, Shin-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 工業設計學系碩士在職專班 Department of Industrial Design (on-the-job training program) |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | 模內裝飾設計 、模內貼供標機 、食品容器包裝 、塑膠射出成形 |
| 外文關鍵詞: | In Mold Decoration, IML Injection Molding Machine, Food container packaging, Plastic injection molding |
| 相關次數: | 點閱:70 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人們從遠古的石器時代走到現今的工業時代,物質生活上的需求從可滿足生理需求的可用,提高到須滿足心理需求的感受。人類藉由思考過去生活經歷的變化,及過去的經歷往往產生了無數組合,設計過程是不斷的發散~收斂~再發散~再收斂......一直循環下去,最終獲得新的概念。市面上販售很多所謂的產品,但如何成為雋永的商品,是多數設計師所嚮往的;商品的最大特點即是擁有吸睛點,如何讓它有所不同以往的既定印象。
現代生活上的便利性,商品的包裝型態美觀會影響到是否吸引消費者的眼光進而採買,而若為食品包裝容器,從消費者的角度通常擺在衛生,模內貼標的產品可採用全自動化生產方式,降低其他的感染接觸源,讓商品在擁有優美的外觀條件下且更加安全衛生。在製造商的角度看模內貼標,產品的包裝是吸引消費者一大條件,在必備條件下經由模內貼標可節省二次加工的運輸成本、時間與空間部分;在政府的角度上須關注,食在人民生活上佔最大的比重,食品包裝容器的一次性消費商品所產生出的垃圾量即為可觀,模內貼標的產品可以不需拆解即可便利的回收,對於環保上貢獻極大。
在工業4.0機器自動化時代食品容器包裝的生產,關注於大量製造下產生的不良率降低是必要的條件之一,所以將從源頭的標籤、模具、射出機、原料與導入的供標機整合之下,研究流程執行將採用田口法來進行實驗,並由原先不良品率5%降至為2%,可解決前端的98%生產成型率,將以不製造出不良品為第一優先考量。
The convenience of modern life, the beautiful packaging style of the goods will affect whether it attracts the consumer's eyes to buy, and if it is a food packaging container, it is usually placed in hygienic from the consumer's point of view. Automated production methods reduce other sources of infection and make the products safer and more hygienic under beautiful conditions. From the perspective of the manufacturer, in-mold labeling is a major condition for attracting consumers. Under the necessary conditions, in-mold labeling can save the transportation cost, time and space of secondary processing; from the perspective of the government, it should be noted that food accounts for the largest proportion of people's lives. The amount of garbage generated by disposable consumer goods in food packaging containers is considerable. The products labeled in the mold can be easily recovered without disassembly. For environmental protection great contribution.
In the era of industrial 4.0 machine automation, the production of food containers and packaging is one of the necessary conditions to focus on reducing the defective rate caused by mass production. Therefore, labels, molds, injection machines, raw materials and imported label supply machines will be integrated from the source. Next, the implementation of the research process will use Taguchi method to conduct experiments, and reduce the original defective rate from 5% to 2%, which can solve the 98% front-end production molding rate, and it is the first priority to not produce defective products.
英文參考文獻
Amber, G. (2020.3.7). In Mold Labeling Market 2020 Industry Share, Size, Growth, Demand, Key Players, and Industry Potential by 2020-2026, market research. Schwabisch Experte. Retrieved from http://schwabischexperte.com
Botthof, A., & Hartmann, E. A. (2015). Zukunft der Arbeit in Industrie 4.0: Springer Vieweg Berlin.
Brackett, R. E., Ocasio, W., Waters, K., Barach, J., & Wan, J. (2014). Validation and verification: a practical, industry-driven framework developed to support the requirements of the Food Safety Modernization Act (FSMA) of 2011. Food Prot. Trends, 34, 410-425.
Bryce, D. M. (1996). Plastic injection molding: manufacturing process fundamentals: Society of Manufacturing Engineers.
Chen, Y.X., Chang, S.C., & Young, W.B. (2018). Application of lattice Boltzmann method in free surface flow simulation of micro injection molding. Computers & Mathematics with Applications, 75(7), 2374-2386.
Corcione, M. (2011). Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy conversion and management, 52(1), 789-793.
Cox, W., & Merz, E. (1958). Correlation of dynamic and steady flow viscosities. Journal of Polymer Science, 28(118), 619-622.
Ealey, L. A. (1988). Quality by design: Taguchi methods and US industry: ASI Press Dearborn, Michingan.
Fofana, R., Gerhards, R., Krauß, A., & Weber, T. (2018). Release liner. In: Google Patents.
Harold, D. F. (1933). Container forming machine. In: Google Patents.
Hermann, M., Pentek, T., & Otto, B. (2016). Design principles for industrie 4.0 scenarios. In 2016 49th Hawaii international conference on system sciences (HICSS) (pp. 3928-3937). IEEE.
Incropera, F. P., Lavine, A. S., Bergman, T. L., & DeWitt, D. P. (2007). Fundamentals of heat and mass transfer: Wiley.
Jang, J., Ha, C., Chu, B., & Park, J. (2016). Development of Fault Diagnosis Technology Based on Spectrum Analysis of Acceleration Signal for Paper Cup Forming Machine. Journal of the Korean Society of Manufacturing Process Engineers, 15(6), 1-8.
Kazmer, D. O. (2016). Injection mold design engineering: Carl Hanser Verlag GmbH Co KG.
Kim, W. H., & Park, T. W. (2012). Study of optimization of the barrel cam in a paper-cup-forming machine. Journal of mechanical science and technology, 26(9), 2679-2684.
Langer, J. S. (2008). Shear-transformation-zone theory of plastic deformation near the glass transition. Physical Review E, 77(2), 021502.
Lin, K. S. (2019). New Cost-Consequence FMEA Model for Information Risk Management of Safe And Secure SCADA Systems. In International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (pp. 33-51). Springer, Cham.
Lipovetsky, S. (2009). Pareto 80/20 law: derivation via random partitioning. International Journal of Mathematical Education in Science and Technology, 40(2), 271-277.
Liu, H. C., Liu, L., & Liu, N. (2013). Risk evaluation approaches in failure mode and effects analysis: A literature review. Expert systems with applications, 40(2), 828-838.
Malloy, R. A. (1994). Plastic part design for injection molding (Vol. 83). New York: Hanser Publishers.
Mertz, A. M. (2012). Understanding melt flow index and ASTM D1238. University of Wisconsin--Madison,
Mueller, S., & Llewellin, E. (2010). Mader HM, The rheology of solid particles. Proceedings of the Royal Society A, 466, 1201-1228.
Robertson, G. L. (2016). Food packaging: principles and practice: CRC press.
Rosato, M. G., & Rosato, D. V. (2012). Concise encyclopedia of plastics: Springer Science & Business Media.
Shah, S. D., & Visconti, C. H. (1996). Gas-assisted plastics injection molding with controlled melt flow and method of controlling melt flow. In: Google Patents.
Shenoy, A., & Saini, D. (1988). Effects of temperature on the flow of copolymer melts. Materials chemistry and physics, 19(1-2), 123-130.
Stamatis, D. H. (2017). The OEE primer: understanding overall equipment effectiveness, reliability, and maintainability: CRC Press.
Tanaka, T., & Tabata, S. (2017). Blow molding device and blow molding method. In: Google Patents.
Watanabe, H., & Kuwahara, I. (2004). Stock material for container body of insulating paper container, insulating paper container and process for making them. In: Google Patents.
Zaikov, V. (2020). Shrink film for label. In: Google Patents.
Zhang, Y., Gui, Y., Meng, F., Li, L., Gao, C., Zhu, H., & Hao, Y. (2016). Graphene water transfer printing for 3D surface. In 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS) (pp. 13-16). IEEE.
中文參考文獻
李輝煌. (2000). 田口方法--品質設計的原理與實務. 台北:高立圖書有限公司。
陳忠輝、蘇云笛. (2010).模內裝飾相關技術與材料產業供應鏈分析之探討.印刷科技,
26(1),64-84。
校內:2027-01-20公開