簡易檢索 / 詳目顯示

研究生: 劉映辰
Liu, Ying-Chen
論文名稱: 發展溶瘤腺病毒攜帶微小核醣核酸-1 治療胰臟癌
Development of Oncolytic Adenovirus Carrying MicroRNA-1 for Virotherapy of Pancreatic Cancer
指導教授: 吳昭良
Wu, Chao-Liang
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 47
中文關鍵詞: 胰臟癌溶瘤腺病毒微小核醣核酸-1
外文關鍵詞: pancreatic cancer, oncolytic adenovirus, microRNA-1
相關次數: 點閱:91下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 胰臟癌在美國為排名第四的癌症導致之死亡原因,且其病患的五年存活率在所有癌症病患中是最低的,只有9%。僅僅使用傳統的化療藥物來治療胰臟癌猶嫌不足,發展新的治療方式已是當務之急。溶瘤腺病毒為可以選擇性毒殺癌細胞而不會傷害正常細胞的病毒。將腺病毒改造為可以選擇性在癌細胞中複製最為常見的策略為將病毒的早期基因剔除,例如剔除E1A和E1B;另一種常見的策略為插入在癌細胞中活性特別強的啟動子來驅動病毒的早期基因表現。白血球介素-8 (interleukin-8,IL-8)在許多種癌症中都有表現量上升的趨勢,其中也包括胰臟癌。在先前本實驗室的研究中曾經構築了一個E1B55K基因缺失並以人類IL-8啟動子驅動的溶瘤腺病毒,命名為Ad.WSW。微小核醣核酸(microRNA,miR)是一群小型非編碼的RNA分子,且大部分的miR在癌症中都有表現量下降的情形,因為它們通常為腫瘤抑制基因,其中,miR-1在很多種癌症中的表現量都有下降,且具備良好的治療潛力。在本研究中,我們顯示了過度表現miR-1在胰臟癌細胞株中可以抑制細胞的增殖、細胞週期前進和促進細胞凋亡。因此,我們構築了一個以Ad.WSW為載體攜帶miR-1的重組溶瘤腺病毒,命名為Ad.WSW-miR-1,並用在胰臟癌的KPC小鼠模型中。結果顯示Ad.WSW-miR-1比起Ad.WSW能更有效地殺死人類和小鼠的胰臟癌細胞株,且對於正常的小鼠細胞株則不會有影響。對於KPC小鼠,Ad.WSW-miR-1也比起Ad.WSW更能抑制小鼠腫瘤的生長。因此,我們推論Ad.WSW-miR-1有潛力做為胰臟癌有效的治療藥物。

    Pancreatic cancer is the fourth leading cause of death from cancer in the United States. The 5-year survival rate of pancreatic cancer is only 9%, which is the lowest for all cancers. The sole use of conventional chemotherapeutics is not enough to treat pancreatic cancer. Oncolytic adenovirus can selectively destroy cancerous cells and avoid damaging healthy tissues. The most common strategy to generate replication-selective adenovirus mutants is to delete the viral early genes, such as E1A and E1B. Another common strategy is to insert tumor-selective promoter to drive the expression of viral early genes. Interleukin-8 (IL-8) is often upregulated in many types of cancer, including pancreatic cancer. In our previous study, we generated an E1B55K-deleted oncolytic adenovirus driven by the human IL-8 promoter, designated Ad.WSW. MicroRNAs (miRs) are a group of small non-coding RNA molecules, most of which are downregulated in human cancers and function as tumor-suppressor genes. miR-1 is one of the most consistently downregulated miRs in human cancers and has a great therapeutic potential. In this study, we show that overexpression of miR-1 in pancreatic cancer cells can inhibit cell proliferation and cell cycle progression, as well as promote apoptosis. Therefore, we constructed a new recombinant adenovirus based on Ad.WSW carrying miR-1, designated Ad.WSW-miR-1, and tested its oncolytic activity for the treatment of pancreatic cancer in the KPC mouse model. Our results show that Ad.WSW-miR-1 much efficiently killed human and murine pancreatic cancer cells than Ad.WSW. Moreover, it was not cytolytic to normal murine cells. Ad.WSW-miR-1 also much efficiently inhibited tumor growth in KPC mice than Ad.WSW. We conclude that Ad.WSW-miR-1 has the potential to be an effective strategy for the treatment of pancreatic cancer.

    考試合格證明…………………………………………………………………I 中文摘要……………………………………………………………………. II 英文摘要…………………………………………………………………….IV 誌謝………………………………………………………………………...XII 目錄………………………………………………………………………..XIII 圖目錄…………………………………………………………………....XVII 壹、緒論……………………………………………………………………...1 一、胰臟癌……………………………………………………………...1 (一)流行病學……………………………………………………………1 (二)危險因子和臨床症狀………………………………………………1 (三)分子機轉……………………………………………………………2 (四)治療…………………………………………………………………2 二、溶瘤腺病毒………………………………………………………...3 (一)腺病毒的基本介紹…………………………………………………3 (二)溶瘤腺病毒療法……………………………………………………4 三、微小核醣核酸-1…………………………………………………...6 (一)微小核醣核酸的基本特性…………………………………………6 (二)miR-1在癌症中的角色…………………………………………….7 貳、研究動機………………………………………………………………...9 參、材料與方法…………………………………………………………….10 一、材料……………………………………………………………….10 (一)質體………………………………………………………………..10 (二)引子………………………………………………………………..11 (三)細胞株……………………………………………………………..12 (四)抗體………………………………………………………………..12 (五)蛋白質萃取細胞裂解液…………………………………………..13 (六)腺病毒……………………………………………………………..13 (七)菌株………………………………………………………………..14 (八)細菌培養液………………………………………………………..14 (九)磷酸鈣轉染法試劑………………………………………………..15 (十)實驗動物…………………………………………………………..16 二、方法……………………………………………………………….16 (一)細胞培養…………………………………………………………..16 (二)IL-8啟動子活性分析…………………………………………….16 (三)RNA萃取…………………………………………………………17 (四)反轉錄……………………………………………………………..17 (五)即時定量聚合酶連鎖反應………………………………………..18 (六)慢病毒的生產與感染……………………………………………..19 (七)西方墨點法………………………………………………………..20 (八)攜帶miR-1的Ad.WSW之構築與生產…………………….......20 (九)定量腺病毒的效價………………………………………………..21 (十)細胞毒殺分析……………………………………………………..22 (十一)動物實驗………………………………………………………..22 (十二)統計分析………………………………………………………..23 肆、結果…………………………………………………………………….24 一、不同的人類胰臟癌細胞中IL-8啟動子的活性和mRNA的表現量……………………………………………………………………….24 二、過度表現miR-1對小鼠胰臟癌細胞株KPC-luc細胞的影響……………………………………………………………………….24 三、構築攜帶miR-1的Ad.WSW………………..............................25 四、利用real-time PCR確認重組病毒Ad.WSW-miR-1………….26 五、Ad.WSW-miR-1對小鼠的胰臟癌細胞株和正常細胞株的毒殺效果……………………………………………………………………26 六、Ad.WSW-miR-1對人類胰臟癌細胞株的毒殺效果…………...27 七、Ad.WSW-miR-1對KPC小鼠的治療效果…………………….27 伍、討論…………………………………………………………………….29 參考文獻…………………………………………………………………….31 圖表………………………………………………………………………….36

    Aune, D., Greenwood, D.C., Chan, D.S., Vieira, R., Vieira, A.R., Navarro Rosenblatt, D.A., Cade, J.E., Burley, V.J., and Norat, T. (2012). Body mass index, abdominal fatness and pancreatic cancer risk: a systematic review and non-linear dose-response meta-analysis of prospective studies. Ann Oncol 23, 843-852.
    Baker, A.T., Aguirre-Hernandez, C., Hallden, G., and Parker, A.L. (2018). Designer Oncolytic Adenovirus: Coming of Age. Cancers (Basel) 10.
    Ben, Q., Xu, M., Ning, X., Liu, J., Hong, S., Huang, W., Zhang, H., and Li, Z. (2011). Diabetes mellitus and risk of pancreatic cancer: A meta-analysis of cohort studies. Eur J Cancer 47, 1928-1937.
    Bosetti, C., Lucenteforte, E., Silverman, D.T., Petersen, G., Bracci, P.M., Ji, B.T., Negri, E., Li, D., Risch, H.A., Olson, S.H., et al. (2012). Cigarette smoking and pancreatic cancer: an analysis from the International Pancreatic Cancer Case-Control Consortium (Panc4). Ann Oncol 23, 1880-1888.
    Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., and Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68, 394-424.
    Burris, H.A., 3rd, Moore, M.J., Andersen, J., Green, M.R., Rothenberg, M.L., Modiano, M.R., Cripps, M.C., Portenoy, R.K., Storniolo, A.M., Tarassoff, P., et al. (1997). Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol 15, 2403-2413.
    Cheng, Q., Han, L.H., Zhao, H.J., Li, H., and Li, J.B. (2017). Abnormal alterations of miR-1 and miR-214 are associated with clinicopathological features and prognosis of patients with PDAC. Oncol Lett 14, 4605-4612.
    Cicenas, J., Kvederaviciute, K., Meskinyte, I., Meskinyte-Kausiliene, E., Skeberdyte, A., and Cicenas, J. (2017). KRAS, TP53, CDKN2A, SMAD4, BRCA1, and BRCA2 Mutations in Pancreatic Cancer. Cancers (Basel) 9.
    Collisson, E.A., Trejo, C.L., Silva, J.M., Gu, S., Korkola, J.E., Heiser, L.M., Charles, R.P., Rabinovich, B.A., Hann, B., Dankort, D., et al. (2012). A central role for RAF-->MEK-->ERK signaling in the genesis of pancreatic ductal adenocarcinoma. Cancer Discov 2, 685-693.
    Conroy, T., Desseigne, F., Ychou, M., Bouche, O., Guimbaud, R., Becouarn, Y., Adenis, A., Raoul, J.L., Gourgou-Bourgade, S., de la Fouchardiere, C., et al. (2011). FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 364, 1817-1825.
    Dmitriev, I., Krasnykh, V., Miller, C.R., Wang, M., Kashentseva, E., Mikheeva, G., Belousova, N., and Curiel, D.T. (1998). An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism. J Virol 72, 9706-9713.
    Duell, E.J., Lucenteforte, E., Olson, S.H., Bracci, P.M., Li, D., Risch, H.A., Silverman, D.T., Ji, B.T., Gallinger, S., Holly, E.A., et al. (2012). Pancreatitis and pancreatic cancer risk: a pooled analysis in the International Pancreatic Cancer Case-Control Consortium (PanC4). Ann Oncol 23, 2964-2970.
    Eser, S., Reiff, N., Messer, M., Seidler, B., Gottschalk, K., Dobler, M., Hieber, M., Arbeiter, A., Klein, S., Kong, B., et al. (2013). Selective requirement of PI3K/PDK1 signaling for Kras oncogene-driven pancreatic cell plasticity and cancer. Cancer Cell 23, 406-420.
    Filipowicz, W., Bhattacharyya, S.N., and Sonenberg, N. (2008). Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9, 102-114.
    Han, C., Yu, Z., Duan, Z., and Kan, Q. (2014). Role of microRNA-1 in human cancer and its therapeutic potentials. Biomed Res Int 2014, 428371.
    He, T.C., Zhou, S., da Costa, L.T., Yu, J., Kinzler, K.W., and Vogelstein, B. (1998). A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci U S A 95, 2509-2514.
    Heise, C., Sampson-Johannes, A., Williams, A., McCormick, F., Von Hoff, D.D., and Kirn, D.H. (1997). ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med 3, 639-645.
    Iacobuzio-Donahue, C.A., Maitra, A., Shen-Ong, G.L., van Heek, T., Ashfaq, R., Meyer, R., Walter, K., Berg, K., Hollingsworth, M.A., Cameron, J.L., et al. (2002). Discovery of novel tumor markers of pancreatic cancer using global gene expression technology. Am J Pathol 160, 1239-1249.
    Liu, R., Li, J., Lai, Y., Liao, Y., Liu, R., and Qiu, W. (2015). Hsa-miR-1 suppresses breast cancer development by down-regulating K-ras and long non-coding RNA MALAT1. Int J Biol Macromol 81, 491-497.
    Luo, J., Deng, Z.L., Luo, X., Tang, N., Song, W.X., Chen, J., Sharff, K.A., Luu, H.H., Haydon, R.C., Kinzler, K.W., et al. (2007). A protocol for rapid generation of recombinant adenoviruses using the AdEasy system. Nat Protoc 2, 1236-1247.
    Misiewicz-Krzeminska, I., Krzeminski, P., Corchete, L.A., Quwaider, D., Rojas, E.A., Herrero, A.B., and Gutierrez, N.C. (2019). Factors Regulating microRNA Expression and Function in Multiple Myeloma. Noncoding RNA 5.
    Nattress, C.B., and Hallden, G. (2018). Advances in oncolytic adenovirus therapy for pancreatic cancer. Cancer Lett 434, 56-69.
    Nemunaitis, J., Tong, A.W., Nemunaitis, M., Senzer, N., Phadke, A.P., Bedell, C., Adams, N., Zhang, Y.A., Maples, P.B., Chen, S., et al. (2010). A phase I study of telomerase-specific replication competent oncolytic adenovirus (telomelysin) for various solid tumors. Mol Ther 18, 429-434.
    Russell, W.C. (2009). Adenoviruses: update on structure and function. J Gen Virol 90, 1-20.
    Ryan, D.P., Hong, T.S., and Bardeesy, N. (2014). Pancreatic adenocarcinoma. N Engl J Med 371, 2140-2141.
    Siegel, R.L., Miller, K.D., and Jemal, A. (2019). Cancer statistics, 2019. CA Cancer J Clin 69, 7-34.
    Twumasi-Boateng, K., Pettigrew, J.L., Kwok, Y.Y.E., Bell, J.C., and Nelson, B.H. (2018). Oncolytic viruses as engineering platforms for combination immunotherapy. Nat Rev Cancer 18, 419-432.
    Von Hoff, D.D., Ervin, T., Arena, F.P., Chiorean, E.G., Infante, J., Moore, M., Seay, T., Tjulandin, S.A., Ma, W.W., Saleh, M.N., et al. (2013). Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 369, 1691-1703.
    Weiss, M., Brandenburg, L.O., Burchardt, M., and Stope, M.B. (2016). MicroRNA-1 properties in cancer regulatory networks and tumor biology. Crit Rev Oncol Hematol 104, 71-77.
    Wesseling, J.G., Bosma, P.J., Krasnykh, V., Kashentseva, E.A., Blackwell, J.L., Reynolds, P.N., Li, H., Parameshwar, M., Vickers, S.M., Jaffee, E.M., et al. (2001). Improved gene transfer efficiency to primary and established human pancreatic carcinoma target cells via epidermal growth factor receptor and integrin-targeted adenoviral vectors. Gene Ther 8, 969-976.
    Wu, C.D., Kuo, Y.S., Wu, H.C., and Lin, C.T. (2011). MicroRNA-1 induces apoptosis by targeting prothymosin alpha in nasopharyngeal carcinoma cells. J Biomed Sci 18, 80.

    下載圖示 校內:2025-06-23公開
    校外:2025-06-23公開
    QR CODE