| 研究生: |
彭思瑜 Peng, Ssu-Yu |
|---|---|
| 論文名稱: |
雙相不銹鋼應用於離岸風機結構之探討 Study on the Application of Duplex Stainless Steel in Offshore Wind Turbine Structures |
| 指導教授: |
林育芸
Lin, Yu-Yun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 有限元素分析 、單樁式 、套管群樁式 、雙相不銹鋼 |
| 外文關鍵詞: | Finite element analysis, Monopile structure, Jacket structure, Duplex stainless steel |
| 相關次數: | 點閱:119 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於雙相不銹鋼之高強度與優異的耐海水腐蝕特性,本研究分析單樁式(Monopile)與套管群樁式(Jacket)離岸風機支承結構在海水環境中受到不同載重組合作用,若兼顧結構安全與腐蝕問題的考量,採取雙相不銹鋼作為結構材料之可能性。結構分析以ABAQUS軟體建立有限元素模型,模擬兩種離岸風機結構受到結構自重、上部風力機組重、風力、海浪力之靜態載重組合作用下,結構中各元件應力與變形行為,以及整體結構之自然振動頻率及對應之變形模態。
研究結果發現,海浪分佈力對結構產生之彎矩效應不如風力明顯。在結構自重、上部風力機組重、加上風力之載重組合下,單樁式結構之基樁於海床處產生最大正向應力。當風力大小為2MN時,基樁最大正向應力接近中強度碳鋼之降伏強度;套管群樁式結構之最大應力則發生於塔架與套管連接處,此處採銲接型式,無搭接長度且斷面厚度較薄,受壓力大時容易導致局部挫屈破壞。自然振動頻率分析發現,單樁式結構之第一振動頻率高於套管群樁式結構,且較風機轉子之第一激發頻率(1P)高。在海浪力作用之頻率範圍內,兩種結構型式均存在共振頻率及對應之彎曲變形模態。由於雙相不銹鋼之楊氏模數、柏松比均與中強度碳鋼相近,將套管群樁式結構在海水環境中特別容易受腐蝕區域之套管元件採用雙相不銹鋼來取代,所得之應力分析與自然振動頻率分析結果與中強度碳鋼差異不大。因此採用雙相不銹鋼運用於離岸風機結構上預期是可行的。
關鍵字:有限元素分析、單樁式、套管群樁式、雙相不銹鋼
SUMMARY
Two offshore wind turbine structures, which are the monopile type and the jacket type, subjected to different load combinations were analyzed. The possibility of using duplex stainless steel in the wind turbine structure for its strength and excellent corrosion resistivity was considered. Our analyses were carried out using finite element model in ABAQUS. Load combination consists of the structural weight, the weight of wind turbine, the wind force, and the ocean wave force. The natural vibration frequencies of wind turbine structures and the corresponding deformation modes were also analyzed. The results show that the bending moment and the stress caused by the wind force are much larger than by the ocean wave force. For the monopile structure, the maximum normal stress occurs on the level of seabed and exceeds the yield strength of mild carbon steel, when load combination consists of the structural weight, the weight of wind turbine and the wind force above 2MN. For the jacket structure, the maximum normal stress occurs at the welded joints in the connection part, and causes local buckling when the wind force is above 3MN. The first natural frequency of the monopile structure is higher than that of the jacket structure, and is also higher than the first excitation frequency of the wind turbine rotor. For the jacket structure, the sleeve parts were selected to use duplex stainless steel instead of mild carbon steel, because they are partially immersed in seawater and partially exposed to a seawater splash and their corrosion rate is much higher the other parts. The stresses and the natural vibration frequencies of the jacket structure with duplex stainless steel sleeve are almost the same as those of the jacket structure with mild carbon steel sleeve. It is feasible to apply duplex stainless steel in offshore wind turbine structures, because of its high yielding strength and very low corrosion rate.
Key words: Finite element analysis, Monopile structure, Jacket structure, Duplex stainless steel
[1] 張永源、康志堅,「2014全球風力發電市場發展趨勢與展望」,中華技術期刊,第103期,頁26-37,2014。
[2] DNV, “Design of Offshore Wind Turbine Structures. ” Det Norske Veritas., DNV-OS-J101, 2013.
[3] GL, “Giudeline for the Certification of Offshore Wind Turbines. ”,
Germanischer Lloyd, 2010.
[4] IEC, “Design Requirements. ” International Electrotechnical Commission, IEC 61400-1, 2005.
[5] IEC, “Design Requirements for Offshore Wind Turbines. ” International Electrotechnical Commission, IEC 61400-3, 2009.
[6] 千架海陸風力機風力資訊整合平台,2016,http://www.twtpo.org.tw/offshore_show.aspx?id=18。
[7] 蕭金益,「台電「海風借電」創MIT本土團隊彰化外海打造海上風力發電廠」,台灣電力公司新聞稿,2016。
[8] 廖學瑞、丁金彪、林俶寬、劉育明,「離岸風機基礎設計技術初探」,中華技術期刊,第103期,頁86-94,2014。
[9] 陳一成,「離岸風力發電第一期計畫可行性研究」,台灣電力公司,2015。
[10] N. Dedić, “Analysis of Grouted Connections in Monopile Wind Turbine Foundations Subjected to Horizontal Load Transfer. ”, Master Thesis, Aalbog University, Denmark, 2009.
[11] Densit Ducorit® Ultra-High Performance Grout, 2016, http://www.densit.com/Business_Areas/Renewable_Energy_-_Grouted_Foundation_Solutions/Ducorit%C2%AE.aspx.
[12] I. Lostberg, A. Serennicki, H. Bertnes, and A. Lervik, “Design of Grouted Connections for Monopile Offshore Structures Results from two Joint Industry Projects.”, Stahlbau , Vol. 81, No. 9, pp.695-704, 2012.
[13] 楊聰仁,「腐蝕電化學分析」
[14] 鄭錦榮,「離岸風機海上結構物腐蝕監測及風機資產管理」,台灣電力公司綜合研究所出國報告,2015。
[15] N. W. Farro, L. Veleva, and P. Aguilar, “Mild Steel Marine Corrosion Rates in Atmospheric and Seawater Environments of a Peruvian Port.”, The Electrochemical Society, 215th ECS Meeting, 2009.
[16] B.Wallén,“Corrosion of Duplex Stainless Steels in Seawater. ”, Acom, No.1-98, 1998.
[17] Jacquet Metal Service, 2016, http://www.jacquet.biz/JACQUET/USA/files/JCQusa-alloy-2205.pdf
[18] R. Signorelli, F. Camargo, J. Moreno and J. Muñoz, “Use of Duplex, Super Duplex and Hyper Duplex Stainless Steel Grades for Environments with High Content of Chloride.”, II Seminario Internacional De Desalación En Antofagasta.
[19] ACET,2016,
http://www.ace-t.com/professional-stainless-02.htm
[20] A. U. Malik, N. A. Siddiqi, S. Ahmad and I. N. Andijani, “The Effect of Dominant Alloy Additions on the Corrosion Behavior of Some Conventional and High Alloy Stainless Steels in Seawater.”, Corrosion Science, Vol.37, No.10, pp.1521-1535, 1995.
[21] NSSC, “NSSC®2120 New Lean Duplex. ”Nippon Steel & Sumikin Stainless Steel Corporation, 2012.
[22] 簡民淑,「離岸風機結構中泥漿接合部分之應力分析」,成功大學土木工程研究所碩士論文,2015。
[23] Soil Elastic Young’s Modulus-Geotechdata.info, 2016,
http://www.geotechdata.info/parameter/soil-young's-modulus.html
[24] 廖偉宏,「離岸風機單柱支承基礎結構於靜態側向作用力下之變形與應力分析」,成功大學水利及海洋工程研究所碩士論文,2014。
[25] 廖學瑞、丁金彪、林俶寬,「離岸風力電場開發之海事工程施工船機與安裝技術初探」,中華技術期刊,第103期,頁96-108,2014。
[26] 顏清連,「實用流體力學-FLUID MECHANICS」,五南圖書,台北市,2015。
[27] J. V. D. Tempel and D. P. Molenaar, “Wind Turbine Structural Dynamics-A Review of Principles for Modern Power Generation, Onshore and Offshore.”, Wind Engineering , Vol.26, No.4, pp.211-220, 2002.
[28] Siemens Wind Turbine SWT-3.6-120, 2016, http://www.energy.siemens.com/nl/en/renewable-energy/wind-power/platforms/g4-platform/wind-turbine-swt-3-6-120.htm