| 研究生: |
鍾易亨 Chung, Yi-Heng |
|---|---|
| 論文名稱: |
磷化鋁鎵銦發光二極體外部量子效率的改善 Improvement on External Quantum Efficiency of AlGaInP-Based LEDs |
| 指導教授: |
陳錫銘
Chen, Shi-Ming 蘇炎坤 Su, Yan-Kuin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 英文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 磷化鋁鎵銦 、發光二極體 、電流阻障層 、抗反射層 、梯形島 |
| 外文關鍵詞: | AlGaInP, light-emitting diodes, trapezoid islands, current blocking, antireflection |
| 相關次數: | 點閱:62 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,隨著有機金屬化學氣相磊晶(MOCVD)技術的快速發展,磷化鋁鎵銦發光二極體(AlGaInP light emitting diodes)的內部量子效率(internal quantum efficiency)幾乎可以達到100%。然而,其外部量子效率(external quantum efficiency)卻仍有很大的改善空間。本論文的主要研究目的即為研究數種不同的製程方法來改善發光二極體的外部量子效率以期製作更高亮度的發光二極體。
首先,我們利用氯氣和氬氣的混和氣體以電感耦合電漿蝕刻(ICP)對磷化鎵窗口層(GaP window layer)進行乾式蝕刻,而後以電漿化學氣相沉積法(PECVD)成長二氧化矽當電流阻障層(current blocking layer)。藉由電流阻障層的加入,可以有效的改善注入電流聚集在正電極下方的情形,使注入電流可以擴散至發光二極體的邊緣而提高發光效率。在20mA驅動電流下,9mil及16mil尺寸的發光二極體晶粒可分別提高17.61%及22.17%的發光效率。此外,元件的可靠度測試結果亦在標準範圍內。
其次,我們加入氮化矽抗反射層於發光二極體表面來降低Fresnel loss 以增加光取出。我們先以TFcalc軟體模擬氮化矽和其他材料的穿透率。結果顯示四分之一波長(quarter wavelength)光學厚度(optical thickness)的氮化矽具有最佳的穿透率。實驗結果亦顯示此種條件下的光激發光譜(PL)最高,發光效率可提升28.23%。
根據司乃耳定律,磷化鎵和空氣的臨界角約等於17.1o以致於大部分的光無法透射出來。利用濕蝕刻方法在磷化鎵窗口層上形成許多梯形島(trapezoid islands)可以減低臨界角的限制。32.15o的梯形斜邊可以增加光透射的機會,有8.21%的亮度提昇。
最後,我們混合電流阻障層與抗反射層的雙重效果。在20mA驅動電流下,9mil及16mil尺寸發光二極體晶粒的發光效率可分別提高至59.72%及63.08%。
Recently, with the quick development technique of metal organic chemical vapor deposition (MOCVD), the internal quantum efficiency of AlGaInP light emitting diodes (LEDs) can achieve near 100%. However, there is still a lot of hard work needed to improve the external quantum efficiency. The main purpose of this thesis is to improve external quantum efficiency of LEDs by investigating several different fabrication methods, which can help increase the brightness of LEDs.
The first method proposed is the application of current blocking layer to LED structure. The fabrication process was dry etching on GaP window layer, which is implemented by inductively coupled plasma (ICP) employing the mixture of Cl2 and Ar gases, followed by the deposition of SiO2 film by plasma enhanced CVD (PECVD). By means of inserting current blocking layer, current crowding under positive electrode can be prevented effectively, and the injection current can spread out to the edge of light-emitting diodes to further heighten efficiency. Efficiency was raised by 17.61% and 22.17% at an operation current of 20mA for light-emitting diodes chips with 9mil and 16mil sizes, respectively. In addition, the testing results of the devices reliability were within the standard.
Next, we added SiNx antireflection layer (AR) on LEDs surface to reduce Fressnel loss and increase light extraction. We simulated the transmittance of Si3N4 and other materials by TFcalc. The simulation results showed that we can obtain the best transmittance when the optical thickness of Si3N4 AR layer equaled quarter wavelength of incident light. Under this condition, the PL intensity was the maximum and efficiency was increased by 28.38%.
From Snell’s law, the critical angle between GaP and air is about 17.1o and makes a great fraction of light unable to emit into air. We fabricated many trapezoid islands on GaP window layer by wet etching technology to reduce the low critical angle limitation. By 32.15o bevel edge angle, luminous intensity was raised by 8.21%.
Last, we combined the functions of both current blocking and AR. Under a driving current of 20mA, efficiency was increased up to 59.72% and 63.08% for light-emitting diodes with 9mil and 16mil sizes, respectively.
[1] F. A.Kish and R. M. Fletcher, “Chapter 5 in Semiconducor & Semimetals,” vol. 48, p. 149, 1997.
[2] K. H. Huang, J. G. Yu, C. P. Kuo, R. M. Fletcher, T. D. Osentowski,
L. J. Stinson, M. G. Craford, and A. S. H. Liao, “Twofold efficiency
improvement in high performance AlGaInP light-emitting diodes in the 555–620 nm spectral region using a thick GaP window layer,” Appl. Phys. Lett., vol. 61, p. 1045, 1992.
[3] C. P. Kuo, R. M. Fletcher, T. D. Osentowski, M. C. Lardizabal, M. G.
Craford, and V. M. Robbins, “High performance AlGaInP visible
light-emitting diodes,” Appl. Phys. Lett., vol, 57, p. 2937, 1990.
[4] H. Sugawara, M. Ishikawa, and G. Hatakoshi, “High-efficiency InGaAlP/GaAs visible light-emitting diodes,” Appl. Phys. Lett., vol.58, p. 1010, 1991.
[5] H. Sugawara, K. Itaya, H. Nozaki, and G. Hatakoshi,
“High-brightness InGaAlP green light-emitting diodes,” Appl. Phys.
Lett., vol. 61, p. 1775, 1992.
[6] Fletcher, Robert M., Kuo, Chihping, Osentowski, Timothy D.,
Robbins, Virginia M., “Light-emitting diode with an electrically
conductive window,” U. S. Pat. 5,008,718, 1991.
[7] F. A. Kish, D. A. Vanderwater, and M. J. Peanasky, M. J. Ludowise,
S. G. Hummel, and S. J. Rosner, “Low-resistance Ohmic conduction
across compound semiconductor wafer-bonded interfaces,” Appl. Phys. Lett.,vol. 67, p. 2060, 1995.
[8] X. C. Wang, S. J. Xu, S. J. Chua, K. Li, X. H. Zhang, Z. H. Zhang, K.
B. Chong, and X. Zhang, “Strong influence of SiO2 thin film on
properties of GaN epilayers,” Appl. Phys. Lett., vol. 74, p. 818, 1999.
[9] K. J. Knopp, R. P. Mirin, K. A. Bertness, K. L. Silverman, and D. H.
Christensen, “Compound semiconductor oxide antireflection coatings” J. Appl. Phys., vol. 87, p7169, 2000
[10] R. Kishore, S. N. Singh and B. K. Das, “Screen printed titanium
oxide and PECVD silicon nitride as antireflection coating on silicon
solar cells” Renewable Energy, vol. 12, p. 131, 1997.
[11] A. K. Chin, G. Zydzik, S. Singh, L. G. Van Uitert, and G. Minneci, “Al2O3 as an antireflection coating for InP/InGaAsP LEDs,” J. Vac.
Sci. Technol. B, vol. 1, p. 72, 1983.
[12] I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett., vol. 83, p.2175, 1993.
[13] Reiner Windisch, Barun Dutta, Maarten Kuijk, Alexander Knobloch, Stefan Meinlschmidt, Stefan Schoberth, Peter Kiesel, Gustaaf Borghs, Gottfried H. Döhler, and Paul Heremans, “40% Efficient Thin-Film Surface-Textured Light-Emitting Diodes by Optimization of Natural Lithography,”IEEE Trans. Electron Devices, vol. 47, p. 1492. 2000.
[14] Jianhua Zhao, Aihua Wang, Martin A. Green, and Francesca Ferrazza, “19.8% efficient ‘‘honeycomb’’ textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett., vol. 73, p. 1991, 1998.
[15] Chong-Yi Lee, Meng-Chyi Wu, Wei Lin, “The influence of window layers on the performance of 650 nm AlGaInP/GaInP multi-quantum-well light-emitting diodes,” J. Crystal Growth, vol. 200, p. 382, 1999.
[16] K. Itaya, H. Sugawara, and G. Hatakoshi, J. Crystal Growth, vol. 138, p. 768, 1994.
[17] F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1–x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett.,vol. 64, p. 2839, 1994.
[18] F. A. Kish, D. A. Vanderwater, D. C. DeFevere, D. A. Steigerwald, G. E. Hofler, K. G. Park, and F. M. Steranka, “Highly reliable and efficienct semiconductor wafer-bonded AlGaInP/GaP light-emitting diodes,” Electron Letters, vol. 32, p. 132, 1996.
[19] L. A. Coldern, R. S. Geels, S. W. Corzine, and J. W. Scott, “Efficient vertical-cavity lasers,” Opt. Quantum Electron., vol. 24, p. S105, 1992.
[20] D. B. Young,D. I. Babic, S. P. DenBaars, L. A. Coldren, “Epitaxial AlGaAs/AlAs distributed Bragg reflectors for green (550 nm) lightwaves,” Electron Letters, vol. 28, p. 1873, 1992.
[21] J. M. Dallesasse, P. Gavrilovic, N. Holonyak, Jr., R. W. Kaliski, D. W. Nam, E. J. Vesely, and R. D. Burnham, “Stability of AlAs in AlxGa1–xAs-AlAs-GaAs quantum well heterostructures,” Appl. Phys. Lett., vol. 56, p. 2436, 1990.
[22] T. A. Richard, N. Holonyak, Jr., F. A. Kish, M. R. Keever, and C. Lei, “Postfabrication native-oxide improvement of the reliability
of visible-spectrum AlGaAs–In(AlGa)P p- n heterostructure diodes,” Appl. Phys. Lett., vol. 66, p. 2972, 1995.
[23] T. Kato, H. Susawa, M. Hirotani, T. Saka, Y. Ohashi, E. Shichi, and S. Shibata, J. Cryst. Growth, vol. 107, p. 832, 1991.
[24] Achyut Kumar Dutta, Kiyoe Ueda, Kunihiro Hara, and Kenichi Kobayashi, “High Brightness and Reliable AlGaInP-Based Light-Emitting Diode for POF Data Links,” IEEE Photon. Technol. Lett., vol. 9, p. 1567, 1997.
[25] M. Vogt and R. Hauptmann, “Plasma-deposited passivation layers for moisture and water protection,” Surface and Coatings Technology, vol. 74-75, p676, 1995.
[26] K. Kobayashi, S. Kawata, A. Gomyo, I. Hino, and T. Suzuki, Electron Lett., vol. 21, p. 931, 1985.
[27] H. Okuda, M. Ishikawa, H. Shiozawa, Y. Watanabe, K. Itaya, K. Nitta, G. Hatakoshi,Y. Kokubun, Y. Uematsu, “Highly reliable InGaP/InGaAlP visible light emitting inner stripe lasers with 667 nm lasing wavelength,” IEEE J. Quantum Electron., vol. 25, p. 1477, 1989.
[28] Chul Huh, Ji-Myon Lee, Dong-Joon Kim, and Seong-Ju Park, “Improvement in light-output efficiency of InGaN’GaN multiple-quantum well light-emitting diodes by current blocking layer,” J. Appl. Phys., vol. 92, p. 2248, 2002.
[29] H. Sugawara, M. Ishikawa, Y. Kokubun, Y. Nishikawa, S. Naritsuka, K. Itaya, G. Hatakoshi, and M. Suzuki, “Semiconductor light emitting device ,” U. S. Pat. 5,153,889, 1992.
[30] L. Asinovsky, F. Shen, T. Yamaguchi, “Characterization of the optical properties of PECVD SiNx films using ellipsometry and reflectometry,” Thin Solid Films, vol. 313-314, p. 198, 1998.
[31] E. C. Paloura, Y. Kuo, W. Braun, “On the effect of bonded hydrogen in the local microstructure of PECVD SiNx:H films,” Physica B, vol. 208-209, p. 562, 1995.
[32] L. Xu, H. Lin, X. Chen, X. Wang, M. Sheng, F. Stubhan, K. H. Merkel, J. Wilde, “Moisture-resistant properties of SiNx films prepared by PECVD,” Thin Solid Films, vol. 333, p. 71, 1998.
[33] A. R. DEGHEIDY and M. S. ABDEL KRIM, “EFFECTS OF FRESNEL AND DIFFUSED REFLECTIVITIES ON LIGHT TRANSPORT IN A HALF-SPACE MEDIUM,” Jounal of Quantitative Spectroscopy & Radiative Transfer, vol. 61, p. 751, 1999.
[34] D. A. Vanderwater, I. H. Tan, G. E. HÖFLER, D. C. Defevere, and F. A. Kish, “High-Brightness AlGaInP Light Emitting Diodes,” Proceedings of the IEEE, vol. 85, p. 1752, 1997.
[35] B. J. Lee, C. M. Chang, M. J. Jou, “Light-emitting diodes and method of manufacturing the same,” U. S. Pat. 5,717,226, 1996.
[36] T. Maeda, J. W. Lee, R. J. Shul, J. Han, E. S. Lambers, S. J. Pearton, C. R. Abernathy and W. S. Hobson, “Inductively coupled plasma etching of III–V semiconductors in BCl3-based chemistries: I. GaAs, GaN, GaP, GaSb and AlGaAs,” Appl. Surf. Sci., vol. 143, p. 174, 1999.
[37] Y. B. Hahn, D. C. Hays, H. Cho, K. B. Jung, C. R. Abernathy, S. M. Donovan, S. J. Pearton, J. Han, and R. J. Shul, Mater. Sci. Eng. B, vol. 60, p. 95, 1999.
[38] H. S. Kim, G. Y. Yeom, J. W. Lee, and T. I. Kim, “A study of GaN etch mechanisms using inductively coupled Cl2/Ar plasmas,” Thin Solid Films, vol. 314, p.180, 1999.
[39] D. S. Wuu, C. R. Chung, Y. H. Liu, R. H. Horng and S. H. Huang, “Deep etch of GaP using high-density plasma for light-emitting
diode applications,” J. Vac. Sci. Technol. B, vol 20, p.902, 2002.
[40] J. F. Lin, M. C. Wu, M. J. Jou, C. M. Chang, B. J. Lee, Y. T. Tsai, “Highly reliable operation of indium tin oxide AlGaInP orange light-emitting diodes,” Electron Lett., vol. 30, p. 1973, 1994.
[41] Aliyu, Y.H.; Morgan, D.V.; Thomas, H.; Bland, S.W., “AlGaInP LEDs using reactive thermally evaporated transparent conducting indium tin oxide (ITO),” Electron Lett., vol. 31, p. 2210, 1995.
[42] M. C. Wu, J. F. Lin, M. J. Jou, C. M. Chang, B. J. Lee, “High reliability of AlGaInP LED's with efficient transparent contacts for spatially uniform light emission,” IEEE Electron Devices Letter, vol. 16, p. 482, 1995.
[43] D. V. Morgan, I. M. Al-Ofi, and Y. H. Aliyu, “Indium Tin Oxide spreading layers for AlGaInP visible LEDs,” Semicond. Sci. Technol., vol. 15, p. 67, 2000.
[44] H. C. Wang, Y. K. Su, C. L. Lin, W. B. Chen, and S. M. Chen, “Improvement of AlInP–AlGaInP MQW Light-Emitting Diode by Meshed Contact Layer,” IEEE Photon. Technol. Lett., vol. 14, p. 1491, 2002.
[45] S. Wolf and R. N. Tauber,” Silicon Processing for the VLSI Era,” Process Technology, vol 1, p. 542-547, 1986.
[46] John L. Vossen, Werner Kern,” Thin film processes,” p. 455-456, 1978