簡易檢索 / 詳目顯示

研究生: 葉昱君
Yeh, Yu-Chun
論文名稱: 載體對於5-Aminolevulinic Acid經皮輸送之研究
Investigation on the Role of Transporter for the Skin Transport of 5-Aminolevulinic Acid
指導教授: 蔡瑞真
Tsai, Jui-chen
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床藥學研究所
Institute of Clinical Pharmacy
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 95
中文關鍵詞: 載體經皮輸送
外文關鍵詞: 5-Aminolevulinic acid, skin transport
相關次數: 點閱:105下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 5-Aminolevulinic acid(ALA)為光敏感物質protoporphyrin Ⅸ(PpⅨ)生合成的前趨物,經由血紅素生成路徑合成PpⅨ,用於光動力學療法。為了探討ALA於皮膚細胞吸收之機轉,本實驗室先前採用各種抑制劑探討輸送載體對皮膚細胞吸收ALA所扮演的角色。以人類基底細胞癌(BCC)預培養胺基酸輸送載體System BETA之受質(b-alanine,GABA),對於ALA的吸收量和PpⅨ的生成量都有顯著的抑制,顯示System BETA參與ALA於BCC的穿透機轉;預培養能量抑制劑(metabolic inhibitor)也可以降低ALA於BCC的吸收,其抑制程度與給予不同濃度之GABA所達到之最大抑制效果近似,推論ALA藉由載體輸送部份需要能量存在。於非致腫瘤性細胞株之人類株化角質細胞(HaCaT),預培養胜肽類輸送載體PEPT受質(Gly-Gly),對ALA吸收的抑制效果相對於其他胺基酸輸送載體受質更為明顯,證實ALA於腫瘤細胞及正常細胞的穿透經由不同的載體調控。
    本研究之目的在進一步探討載體於ALA經皮輸送所扮演的角色,選用正常小鼠(ICR)皮膚,以體外及體內模式來評估代謝性抑制劑(NaN3+2-deoxy-D-glucose)和載體抑制劑(b-alanine,Gly-Gly)對經皮滲透速率,表皮、真皮內ALA滯留量和PpⅨ生成量的影響,並比較以不同方式給予抑制劑的效果(預給、後給、或預給&後給)。
    ALA體外滲透試驗證實,四小時試驗之實驗操作方式比六小時較適合探討能量(N-DG)或載體(b-alanine、Gly-Gly)抑制劑之影響。而四小時體外試驗中,預培養抑制劑使ALA之穿皮速率增加,並推論ALA之經皮滲透可能與需要能量的載體運輸有關。正常皮膚體內試驗中,給予抑制劑後可以增加ALA於皮膚內的滯留量,但皮膚內PpⅨ之生成反而增加,結果未與研究假說完全相符。進一步以破壞皮膚障壁之體內模式證實,當抑制劑b-alanine穿透量增加時,ALA滯留量增加及PpⅨ生成減少,其抑制的效果與假說相符,顯示ALA之經皮吸收及PpⅨ的生成,會受載體抑制劑之影響。
    綜合以上結果,雖然本研究之數據變異性較大,無法顯示統計上之顯著差異,但亦指出能量(N-DG)或載體(b-alanine、Gly-Gly)抑制劑可能會影響ALA之經皮輸送,在體外模式能增加ALA之穿透速率,於體內模式則是增加ALA之滯留量及PpⅨ生成量。

    5-Aminolevulinic acid (ALA), the precursor of haem biosynthesis has been used to induce the endogenous synthesis of the photosensitiser protoporphyrin IX for photodynamic therapy. Previous studies have demonstrated that system BETA transporters may play an important role in the uptake of ALA in skin tumor cells (basal cell carcinoma) and results in selective accumulation of ALA-induced PpIX in tumors. Pre-incubation of system BETA substrates, such as b-alanine and GABA, would inhibit the uptake of ALA into the cells and decrease the formation of PpIX. The inhibition effect of pre-incubating metabolic inhibitors in BCC cells is similar to the maximal inhibition effect of GABA, and confirming the energy dependency of mediated-transport. In human immortalized keratinocytes, the dipeptide Gly-Gly has more significant effect than system BETA does. Evidences show that the cellular uptake of ALA in normal and skin tumor cells can be mediated by different transport system.
    The objective of this work was to investigate the role of transporter for the skin transport of ALA. Specifically, metabolic inhibitors (NaN3+ 2-deoxy-D-glucose) and transport inhibitors (b-alanine, Gly-Gly) were applied to examine the skin permeation rate and retention of ALA, and PpIX formation. In in vitro and in vivo mice skin models were used to verify the effect of inhibitors in different conditions, such as pre-load, after-load, and pre & after load.
    The results of in vitro permeation studies showed that four hour experiment was more proper for investigation of metabolic inhibitor or transport inhibitors than six-hour experiment, and the transdermal permeation of ALA could be mediated by energy dependent transporter. In vivo studies showed that inhibitors would increase the deposition of ALA and the formation of PpIX in mouse skin. These results didn’t agree with the hypothesis of the study. Loading b-alanine after breaking the permeability barrier by tape-stripping would increase the deposition of ALA and decrease the formation of PpIX, suggesting that transdermal permeation of ALA and formation of PpIX could be mediated by transport inhibitors.
    In coclusion, although the significance of the results was compromised by the large variation of the data, the studies suggest that metabolic inhibitor (N-DG) and transport inhibitors (b-alanine, Gly-Gly) could mediate the skin transport of ALA. Inhibitors would increase the permeation rate of ALA in in vitro studies, while in in vivo models, they would increase the deposition of ALA and decrease the formation of PpIX.

    中文摘要............................................................................................................I 英文摘要......................................................................................................... III 誌謝..................................................................................................................V 目錄.................................................................................................................VI 表目錄.............................................................................................................IX 圖目錄..............................................................................................................X 縮寫表........................................................................................................... XII 第壹章 文獻回顧 1 第一節 ALA和PpⅨ之特性 1 一、 血紅素生合成路徑 1 二、 PpⅨ生合成影響因素 3 三、 ALA-PDT的應用 8 第二節 皮膚構造及經皮吸收 11 一、 皮膚構造 11 二、 經皮吸收 13 三、 影響經皮吸收的因素 15 第三節 皮膚內之輸送載體 18 一、 皮膚角質細胞內之輸送載體 18 二、 輸送載體對經皮吸收之影響 21 第四節 ALA之載體與抑制劑 25 一、 ALA於細胞膜吸收機轉 25 二、 載體抑制劑 30 三、 能量抑制劑 30 第貳章 研究目的 32 第參章 研究材料及儀器 33 第一節 實驗動物 33 第二節 實驗藥品及材料 33 第三節 儀器裝置 35 第肆章 研究設計 37 第一節 ALA、PpIX高效液相層析之分析方法 37 第二節 抑制劑對ALA於體外六小時經皮滲透試驗之影響 39 第三節 抑制劑對ALA於體外四小時經皮滲透試驗之影響 43 第四節 抑制劑於體內對ALA皮膚吸收及PpIX生成之影響 45 第五節 破壞皮膚障壁對b-alanine於體內對ALA皮膚吸收及生成PpIX之影響 47 第伍章 研究結果 48 第一節 ALA、PpIX之含量分析 48 第二節 不同濃度ALA水溶液經皮滲透之影響 52 第三節 抑制劑對ALA於體外經皮滲透試驗之影響 55 第四節 抑制劑對於體內試驗之ALA滯留量及PpⅨ生成量之影響 67 第五節 破壞皮膚障壁後b-alanine於體內對ALA皮膚滯留及生成PpIX之影響 73 第陸章 討論 78 第一節 輸送載體對經皮吸收的影響 78 一、 研究假說 78 二、 不同濃度ALA對穿透速率之影響 79 第二節 抑制劑於體外經皮滲透試驗的影響 81 第三節 抑制劑於體內試驗對ALA滯留量和PpⅨ生成量的影響 83 第四節 破壞皮膚障壁後b-alanine對體內試驗之ALA滯留量和PpⅨ生成量的影響 86 第柒章 結論 89 第捌章 參考文獻 90

    Aft R, Zhang F, Gius D (2002) Evaluation on 2-deoxy-D-glucose as a chemotherapeutic agent: mechanism of cell death. Br J Cancer 87:806-812.

    Akker Jvd, Iani V, Star W, Sterenborg H, Moan J (2000) Topical application of 5-aminolevulinic acid hexyl ester and 5-aminolevulinic acid to normal nude mouse skin: differences in protoporphyrin IX fluorescence kinetics and the role of the stratum corneum. Photochem Photobiol 72:681-689.

    Baron JM, Holler D, Schiffer R, Frankenberg S, Neis M, Merk HF, et al. (2001) Expression of multiple cytochrome P450 enzymes and multidrug resistance-associated transport proteins in human skin keratinocytes. J Invest Dermatol 116:541-548.

    Barry BW (2001) Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci 14:101-114.

    Beckerath M, Juzenas P, Ma L, Iani V, Loefgren L, Moan J (2001) The influence of UV exposure on 5-aminolevulinic acid-induced protoporphyrin IX production in skin. Photochem Photobiol 74:825-828.

    Berg K, Anholt H, Bech O, Moan J (1996) The influence of iron chelators on the accumulation of protoprophyrin IX in 5-aminolevulinic acid-treated cells. Br J Cancer 74:688-697.

    Bermúdez Moretti M, Correa García S, Chianelli M, Ramos E, Batlle A (1996) δ-Aminolevulinic acid uptake is mediated by the γ-aminobutyric acid-specific permease UGA4. Cell Mol Biol 42:519-523.

    Bermúdez Moretti M, Correa García S, Perotti C, Batlle A, Casas A (2002) Delta-Aminolevulinic acid transport in murine mammary adenocarcinoma cells is mediated by beta transporters. Br J Cancer 87:471-474.

    Dijkstra AT, Majoie IML, Dongen JWFv, Weelden Hv, Vloten WAv (2001) Photodynamic therapy with violet light and topical 5-aminolevulinic acid in the treatment of actinic keratosis, Bowen's disease and basal cell carcinoma. J Eur Acad Dermatol Venereol 15:550-554.

    Donnelly RF, McCarron PA, Woolfson AD (2005) Drug delivery of aminolevulinic acid from topical formulations intended for photodynamic therapy. Photochem Photobiol 81:750-767.

    Elfsson B, Wallin I, Eksborg S, Rudaeus K, Ros AM, Ehrsson H (1998) Stability of 5-aminolevulinic acid in aqueous solution. Eur J Pharm Sci 7:87-91.

    Fotinos N, Campo MA, Popowycz F, Gurny R, Lange N (2006) 5-Aminolevulinic acid derivatives in photomedicine: characteristics, application and perspectives. Photochem Photobiol 82:994-1015.

    Fukuda H, Casas A, Batlle A (2005) Aminolevulinic acid: from its unique biological function to its star role in photodynamic therapy. Int J Biochem Cell Biol 37:272-276.

    Gederaas OA, Holroyd A, Brown SB, Vernon D, Moan J, Berg K (2001) 5-Aminolevulinic acid methyl ester transport on amino acid carriers in a human colon adenocarcinoma cell line. Photochem Photobiol 73:164-169.

    Hara-Chikuma M, Verkman AS (2005) Aquaporin-3 functions as a glycerol transporter in mammalian skin. Biol Cell 97:479-486.

    Harding CR (2004) The stratum corneum: structure and function in health and disease. Dermatol Ther 17:6-15.

    Izquierdo MA, Scheffer GL, Flens MJ, Giaccone G, Broxterman HJ, Meijer CJ, et al. (1996) Broad distribution of the multidrug resistance-related vault lung resistance protein in normal human tissues and tumors. Am J Pathol 148:877–887.

    Juzenas P, Sorensen R, Iani V, Moan J (1999) Uptake of topically applied 5-aminolevulinic acid and production of protoporphyrin IX in normal mouse skin: dependence on skin temperature. Photochem Photobiol 69:478-481.

    Keeney DS, Skinner C, Travers JB, Capdevila JH, Nanney LB, King Jr LE, et al. (1998) Differentiating keratinocytes express a novel cytochrome P450 enzyme, CYP2B19, having arachidonate monooxygenase activity. J Biol Chem 273:32071-32079.

    Kogan A, Garti N (2006) Microemulsions as transdermal drug delivery vehicles. Adv Colloid Interface Sci 123-126:369-385.

    Langer S, Abels C, Botzlar A, Pahernik S, Rick K, Szeimies R-M, et al. (1999) Active and higher intracellular uptake of 5-aminolevulinic acid in tumors may be inhibited by glycine. J Invest Dermatol 112:723-728.

    Li Q, Tsuji H, Kato Y, Sai Y, Kubo Y, Tsuji A (2006) Characterization of the transdermal transport of flurbiprofen and indomethacin. J Control Release 110:542-556.

    Malik Z, Kostenich G, Roitman L, Ehrenberg B, Orenstein A (1995) Topical application of 5-aminolevulinic acid, DMSO and EDTA: protoporphyrin IX accumulation in skin and tumours of mice. J Photochem Photobiol: B 28:213-218.

    Marjukka Suhonen T, A. Bouwstra J, Urtti A (1999) Chemical enhancement of percutaneous absorption in relation to stratum corneum structural alterations. J Control Release 59:149-161.

    Moan J, Berg K, Gadmar O, Iani V, Ma LW, Juzenas P (1999) The temperature dependence of protoporphyrin IX production in cells and tissues. Photochem Photobiol 70:669-673.

    Palacin M, Estevez R, Bertran J, Zorzano A (1998) Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev 78:969-1054.

    Rodriguez L, Batlle A, Di Venosa G, Battah S, Dobbin P, MacRobert AJ, et al. (2006) Mechanisms of 5-aminolevulic acid ester uptake in mammalian cells. Br J Pharmacol 147:825-833.

    Rud E, Gederaas O, Hogset A, Berg K (2000) 5-Aminolevulinic acid, but not 5-aminolevulinic acid esters, is transported into adenocarcinoma cells by system BETA transporters. Photochem Photobiol 71:640-647.

    Schiffer R, Neis M, Holler D, Rodriguez F, Geier A, Gartung C, et al. (2003) Active influx transport is mediated by members of the organic anion transporting polypeptide family in human epidermal keratinocytes. J Invest Dermatol 120:285-291.

    Shemin D, Russell CS (1953) δ-Aminolevulinic acid, its role in the biosynthesis of porphyrins and purines. J American Chem Assn 75:4873-4874.

    Williams AC, Barry BW (2004) Penetration enhancers. Adv Drug Deliv Rev 56:603-618.

    Wyld L, Reed M, Brown N (1998) The influence of hypoxia and pH on aminolevulinic acid-induced photodynamic therapy in bladder cancer cells in vitro. Br J Cancer 77:1621-1627.

    黃盈瑄論文 (2003) Uptake of 5-Aminolevulinic acid in skin tumor cells. 碩士論文,國立成功大學.

    下載圖示 校內:2010-08-15公開
    校外:2010-08-15公開
    QR CODE