| 研究生: |
陳俊祥 Chen, Chun-Hsiang |
|---|---|
| 論文名稱: |
滾輪式雷射金屬轉印技術與三維微奈米結構之直接壓印 Roller-Based and Laser-Assisted Metal Contact Printing Technology and Direct Imprinting of 3D Micro/Nano-Structures |
| 指導教授: |
李永春
Lee, Yung-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 雷射輔助直寫式滾輪奈米壓印 、準分子雷射 、雷射輔助直寫式壓印 、石英模仁 、雷射輔助式金屬轉印 |
| 外文關鍵詞: | Laser-Assisted Roller Imprinting (LARI), Laser-Assisted Metal Contact Printing (LAMP), Excimer Laser, Quartz Mold, Laser-Assisted Direct Imprinting (LADI) |
| 相關次數: | 點閱:147 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
雷射輔助式金屬轉印技術是利用雷射在預先製作好且蒸鍍上金屬的模仁表面上進行照射,進而造成金屬層加熱的效果,同時基板在一預壓力下與模仁進行接觸,藉此將模仁上具有特定圖案的金屬層轉印至基板上。本文利用此雷射金屬轉印技術,將矽模仁上具有奈米圖案的金屬層轉印至石英基板上,並以此金屬層作為蝕刻阻擋層對石英基板進行乾式蝕刻,進而快速地製作出微米級以及奈米級尺度的石英模具。後續再以製作完畢的石英模具進行雷射輔助直寫式滾輪奈米壓印,直接在矽基板上壓印出奈米等級的三維微結構。
在雷射金屬轉印的實驗中,我們是以KrF準分子雷射(波長248 nm,脈衝時間30 ns)作為加熱源,同時探討在不同雷射能量密度(Laser Fluence)(25 mJ/cm2 ~ 50 mJ/cm2)以及施加載重(1 kg ~ 3.5 kg)等參數下金屬轉印的效果。在實驗架構方面,同時採用平面式轉印機構以及滾輪式轉印機構等兩種架構進行雷射金屬轉印的實驗,進而探討模仁與基板之間的接觸效果對圖案轉移的影響性。同時我們引入氣相沉積的製程,在矽模仁上蒸渡抗沾黏層,藉此改變金屬層與模仁以及基板三者之間彼此的鍵結力,進而提升圖案轉印的成功率。
最後利用雷射金屬轉印技術所製作出的奈米級石英模仁,進行雷射輔助直寫式滾輪奈米壓印,透過滾印的技術,直接在矽基板上大面積的壓印出微米等級以及奈米等級的三維微結構。
This thesis investigates a special type of nano-patterning method, named Laser-Assisted Metal Contact Printing (LAMP), which transfers a metal pattern directly from a silicon mold to a quartz substrate based on contact loading and pulsed laser heating. Subsequent dry etching on the patterned quartz substrate using the transferred metal pattern as the etching mask completes the fabrication of quartz molds with micro- or nano-features. Furthermore, using these fabricated quartz molds, we can continuously and rapidly replicate the nano- and micro- structures on silicon wafers by using a roller type of laser-assisted direct imprinting method, called Laser-Assisted Roller Imprint (LARI).
In this study, we utilize a single KrF excimer laser pulse (248 nm wavelength and 30 ns pulse duration) as the heating source. The influence of laser fluence and the imprinted pressure on the LAMP process and its results is studied by varying the laser fluence (25 mJ/cm2 ~ 50 mJ/cm2) and the imprinted load (1 kg ~ 3.5 kg). Both planar and roller-based metal transfer mechanisms are tested and compared. In the meanwhile, the introduction of an anti-adhesion thin film on the surface of silicon mold shows great improvements on the metal film patterning of LAMP.
Finally, the fabricated nano-scaled quartz molds are applied to the imprinting of silicon wafer by using Laser-assisted Roller imprinting (LARI), which is a continuous type of nano-fabrication for large area imprinting with a much higher throughput. Important imprinting parameters such as laser fluence and loading force as well the imprinting speed and the imprinted 3D nano-structures are investigated experimentally. Good results are observed which demonstrate the feasibility and potentials of LARI process.
[1] 鄭芳松,陳永彬,王倫,楊申語,奈米壓印製造技術發展簡介,台灣奈米會刊第七期,台灣奈米技術產業發展協會出版,台灣(2006).
[2] S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang,“Sub-10 nm imprint lithography and applications,”Journal of Vacuum Science and Technology B, Vol. 15,pp 2897~2904 (1997).
[3] S. Y. Chou, P. R. Krauss and P. J. Renstrom,“Nanoimprint lithography,”Journal of Vacuum Science and Technology B, Vol. 14,pp 4129-4133 (1996).
[4] S. Y. Chou, P. R. Krauss and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,”Applied Physics Letters, Vol. 67,pp 3114-3116 (1995).
[5] P. R. Krauss and S. Y. Chou,“Fabrication of planar quantum magnetic disk structure using electron beam lithography, reactive ion etching , and chemical mechanical polishing,”Journal of Vacuum Science and Technology B, Vol. 13(6) , pp 2850-2852 (1995).
[6] S.Y. Chou, P. R. Kraus and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Applied Physics Letters, Vol. 272, pp 85-87 (1996).
[7] L. J. Guo, P. R. Krauss and S. Y. Chou, “Nanoscale silicon field effect transistors fabricated using imprinting lithography,” Applied Physics Letters, Vol. 71, pp 1881-1883 (1997).
[8] H.Ten, A. Gibertson, and S. Y. Chou, “Roller nanoimprint lithography,” Journal of Vacuum science and Technology B, Vol. 16(6), pp 3926-3928 (1998).
[9] M. D. Austin and S. Y. Chou, “Fabrication of 70 nm channel length polymer organic thin-film transistors using nanoimprint lithography,” Applied Physics Letters, Vol. 81(23), pp 4431-4433 (2002).
[10] W. Zhang and S. Y. Chou, “Fabrication of 60-nm transistors on 4-in wafer using nanoimprint at all lithography levels,” Applied Physics Letters, Vol. 83(8), pp 1632-1634 (2003).
[11] W. Wu, J. Gu, H. X. Ge, C. Keimel and S. Y. Chou, “Room-temperature Si single-electron memory fabricated by nanoimprint lithography,” Applied Physics Letters, Vol. 83(11), pp 2268-2270 (2003).
[12] Stephen Y. Chou and Peter R. Krauss, “Imprint Lithography with Sub-10nm Feature Size and High Throughput,” Microelectronic Engineering, Vol. 35, pp 237-240 (1997).
[13] M. Bender, M. Otto, B. Hadam, B. Vratzov, B. Spangenberg, and H. Kurz, “Fabrication of nanostructures using a UV-based imprint technique,” Microelectronic Engineering, Vol. 53(1-4), pp 233-236 (2000).
[14] M. Otto, M. Bender, B. Hadam, B. Spangenberg, and H. Kurz, “Characterization and application of a UV-based imprint technique,” Microelectronic Engineering, Vol. 57(58), pp 361-366 (2001).
[15] M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake, T. Michaelson, S. V. Sreenivason, J. Ekerdt, and C. G. Willson,“Step and flash imprint lithography:a new approach to high-resolution patterning,” Proceedings of the SPIE’s 24th International Symposium on Microlithography:Emerging Lithography Technologies Ⅲ, Santa Clara, CA, Vol. 3676, Part One, pp 379-389 (1999).
[16] P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, M. Stewart, J. Ekerdt, S.V. Sreenivasan, J.C. Wolfe, C.G. Willson, “Patterning curved surfaces: template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” Journal of Vacuum Science and Technology B, Vol. 17(6), pp 2965-2969 (1999).
[17] M. Colburn, A. Grot, M. Amistoso, B. J. Choi, T. Bailey, J. Ekerdt, S.V. Sreenivasan, J. Hollenhorst, C. G. Willson, “Step and flash imprint lithography for sub-100nm patterning,” 2000 SPIE's 25th International Symposium Microlithography: Emerging Lithographic Technologies III. Feb. 28 - Mar. 3, 2000 Santa Clara, CA.
[18] T. Bailey, B. J. Choi, M. Colburn, A. Grot, M. Meissl, S. Shaya, J.G. Ekerdt, S.V. Sreenivasan, C.G. Willson, “Step and flash imprint lithography: template surface treatment and defect analysis, ” Journal of Vacuum Science and Technology B, Vol. 18(6), pp 3572-3577 (2000).
[19] M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake, T. Michaelson, S. V. Sreenivasan, J, Ekerdt, and C. G. Willsonet, “Step-and-flash Imprint Lithography: A New Approach to High Resolution Patterning,” Proc. of SPIE, Vol. 3676, pp 379 (1999).
[20] T. K. Whidden, D. K. Ferry, M. N. Kozicki, E. Kim, A. Kumar, J. Wilbur, and G. M. Whitesides, “Pattern transfer to silicon by microcontact printing and RIE,” Nanotechnology, Vol. 7, pp 447-451 (1996).
[21] D. W. Wang, S. G. Thomas, K. L. Wang, Y. Xia and G. M. Whitesides, “Nanometer scale patterning and pattern transfer on amorphous Si, crystalline Si, and SiO2 surfaces using self-assembled monolayers,” Applied Physics Letters, Vol. 70(12), pp 1593-1595 (1997).
[22] X. M. Zhao, Y. Xia and G. M. Whitesides, “Soft lithographic methods for nano-fabrication,” Journal of Materials Chemistry, Vol. 7(7), pp 1069-1074 (1997).
[23] Y. Xia and G. M. Whitesides, “Soft lithography,” Angewandte Chemie International Edition, Vol. 37(5), pp 550-575 (1998).
[24] S. Y. Chou, C. Keimel and J. Gu, “Ultrafast and direct imprint of nanostructures in silicon,” Nature, Vol. 417, pp 835-837 (2002).
[25] R. Fabian Pease, “Imprint offer Moore,” Nature, Vol. 417, pp 802-803 (2002).
[26] 林峻毅, 蕭飛賓, 李永春,雷射輔助直寫式壓印技術對週期性結構之參數探討, 國立成功大學微機電系統工程研究所碩士論文, 民國94年.
[27] Lee, Y.C. , Chiu C.Y., and Hsiao, F.B., “ Laser Assisted Roller Imprinting ,” The 2nd Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems , Jan. 2007, Bangkok, Thailand.
[28] 蘇建彰, “轉印模仁之奈米結構製作”, 機械工業雜誌, 269期, pp 44-55, (2005).
[29] M. Beck, M. Graczyk, I. Maximov, E. L. Sarwe, T.G.I. Ling, M. Keil, and L. Montelius, “Improving stamps for 10 nm level wafer scale nanoimprint lithography,” Microelectronic Engineering, Vol. 61-62, pp 441-448 (2002).