簡易檢索 / 詳目顯示

研究生: 吳昺璋
Wu, Bing-Zhang
論文名稱: 透過Particle_in_Cell(PIC)模擬的方式模擬庫倫碰撞會對電漿波迴聲造成之影響
Investigation of Coulomb collisional effects on plasma wave echo by using Particle-in-Cell simulation
指導教授: 西村泰太郎
Yasutaro Nishimura
學位類別: 碩士
Master
系所名稱: 理學院 - 太空與電漿科學研究所
Institute of Space and Plasma Sciences
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 71
中文關鍵詞: 粒子網格法模擬電漿波迴聲庫倫碰撞不可逆的起源多體質心問題演算法
外文關鍵詞: Particle-in-cell simulation, Plasma wave echo, Coulomb collision, Origin of irreversibility, N-body gravitational algorithm
相關次數: 點閱:126下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 粒子網格法(Particle-in-Cell)模擬至今已發展到能透過電漿波回聲去觀察電漿波與粒子間的交互作用可逆與否。 透過PIC模擬能觀察到給予電漿兩個外加的電場脈衝所產生的電漿波回聲, 但電漿波在考慮庫倫碰撞的情況下形成不可逆現象, 除了影響電漿波回聲的發生時間外也會降低電漿波回聲的振幅。 為了將二元碰撞納入粒子網格法(PIC)模擬去觀察庫倫碰撞對電漿波回聲造成之影響, 我們參考了一種用於解質心問題的演算法名叫 Barnes and Hut 演算法並將其簡化來預估多體的庫倫力。

    An electrostatic Particle-in-Cell (PIC) simulation is developed to investigate the origin of irreversibility in the electron plasma wave. By giving two external pulse electric field to the plasma, the temporal plasma echo is observed in the PIC simulation. If Coulomb collisional effects are considered, the plasma wave echo will become irreversible phenomena. The Coulomb collisional effect is manifested as the time-shift of the echo peak and the damping of the echo peak amplitude. Binary collisions into the PIC simulation is incorporated to demonstrate collisional effects on the plasma wave echo. A simplified algorithm which can approximate the N-body force calculation is employed learning from the Barnes and Hut algorithm by the gravitational problems.

    摘要 III Abstract IV List of Figures V Chapter 1 Introduction 1 Chapter 2 Theoretical and Computation Model 6 2-1. Vlasov Kinetic theory from a discrete particle system (Klimotovich equation) 6 2-2. Wave-particle interaction (Landau damping) 12 2-3.Temporal plasma wave echo 17 2-4. Coulomb collisional effects on plasma echo 19 Chapter 3 Numerical Simulation by Particle-In-Cell Simulation 30 3-1. Normalization of Vlasov-Poissson system 32 3-2. Time advance particles’ motion 34 3-3. Loading of the initial distribution 35 3-4. Interpolation scheme for density gathering 38 3-5. Poisson solver 39 3-6. Barnes and Hut algorithm for Coulomb collisions 43 Chapter 4 Simulation Results 48 4-1. Landau damping of Langmuir waves 48 4-2. Collisionless plasma wave echo 52 4-3. Plasma wave echo with Coulumb collisions 55 Chapter 5 Summary and Discussions 68 Appendix 70 Appendix 1 70 Appendix 2 70 References 71

    Dwight R. Nicholson, Introduction to plasma theory (Krieger, Melbourne, 1992), pp.3-14, pp.73-96.
    R. W. Gould and T, M. O’Neil, and J. H. Malmberg, “Plasma wave echo” Phys. Rev. Lett. 19, 219 (1967).
    J. H. Malmberg, C. B. Wharton, R. W. Gould, and T, M. O’Neil, “Plasma wave echo experiment” Phys. Rev. Lett. 20, 95 (1968).
    N. Yugami, S. Kusaka, and Y. Nishida, “Observation of temporal plasma-wave echoes in an ion-wave regime” Phys. Rev. E 49, 2276, (1994).
    S. Ichimaru, Basic principles of plasma physics (Benjamin, Reading, 1973), pp.115-125.
    C.K. Bridsall and Langdon, Plasma physics via computer simulation (IoP publishing, Bristol, 1986), p.13.
    J. Barnes and P. Hut, “A hierarchial O(N log N) force-calculation algorithm” Nature 324, 446, (1986).
    C. P. Wang, “N-body Coulomb force simulation of basic plasma physics by GPU computing”, Master’s thesis, National Cheng Kung University (2017).
    R. D. Sydora, “δf particle-in-cell plasma simulation model:properties and applications”, Advanced Methods for Space Simulations, pp.47-60 (2007).
    C. M. Chen “Low frequency plasma wave simulation by gyrokinetic marker particles in low dimensional geometry”, Master’s thesis, National Cheng Kung University (2015 ).
    S. Aarseth, “Gravitational N-body Simulations: Tools and Algorithms”, (Cambridge University Press, Cambridge, UK, 2003), pp. 1-17.
    C. P. Wang and Y. Nishimura, “Numerical studies of Coulomb collisions, relaxation, and Debye shielding by N-body simulation” submitted to IEEE Transactions on Plasma Science (2018).
    C. H. Su and C. Oberman, “Collisional damping of a plasma echo” Phys. Rev. Lett. 20, 427 (1968).
    J. Dawson, “One-dimensional plasma model,” Phys. Fluids 5, 4, (1962).
    M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. (Dover, New York, 1970), p. 933.
    K. Huang, Introduction to Statistical Physics 2nd edition (Taylor & Francis, New York, 2001), p. 226.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE