| 研究生: |
林宇宏 Lin, Yu-Hong |
|---|---|
| 論文名稱: |
超高性能混凝土梁之撓曲行為與強度分析 Flexural Behavior and Strength Evaluation of Steel Reinforced Ultra High Performance Concrete Beams |
| 指導教授: |
洪崇展
Hung, Chung-Chan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 398 |
| 中文關鍵詞: | 超高性能纖維混凝土(UHPFRC)梁 、縱向鋼筋比 、撓曲強度分析 、DIC 、OpenSees |
| 外文關鍵詞: | Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) beams, longitudinal reinforcement ratio, flexural strength model, DIC, OpenSees |
| 相關次數: | 點閱:184 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
超高性能纖維混凝土(UHPFRC)為一種新興材料,能展現出比傳統混凝土更優秀的抗壓強度和韌性。目前已有許多研究顯示,計算超高性能纖維混凝土梁的撓曲強度時,須考慮混凝土抗拉強度的貢獻。然而根據現今的相關研究結果,仍未出現通用的計算方式,本研究的目的為驗證超高性能纖維混凝土梁計算撓曲強度的預測公式。為了探討超高性能混凝土梁之撓曲行為,設計了10支梁試體,設計參數為縱向鋼筋比(2.8%、5.9%、11.1%)、纖維量(2%、0.75%)、纖維種類(端鉤型、直線型)、澆置方式(標準澆置、反向澆置)。
根據ACI 544中的力學模型,並透過先前的超高性能纖維混凝土梁之四點彎矩試驗結果,建議極限時拉力側矩形應力塊的折減係數值,再利用先前文獻中的實驗結果,驗證此強度預測分析模型的精確性。最後建議在模擬梁之撓曲行為時,可使用的材料分析模型。
研究結果顯示,和實驗結果比較後,本研究建議的撓曲強度預測公式,可合理預測梁斷面的降伏撓曲強度。
The objective of this study is to evaluate the model that predicts the nominal flexural strength of ultra-high performance fiber reinforced concrete (UHPFRC) beams. In order to investigate the flexural behavior of UHPFRC beams, ten beam specimens were designed with different longitudinal rebar ratio, fiber volume fraction, fiber types and placing directions. Based on ACI 544 model, the factor relating depth of the equivalent rectangular tension stress block is proposed with the four-point bending tests result. The verification was carried out with the test result of previous researches to check the accuracy of the calculated flexural strengths. Furthermore, according to the four-point bending tests result, the material models of UHPFRC beams are suggested. The result shows that the ultimate moment capacity of UHPFRC beams can be predicted by the proposed model when compared to the experimental results.
[1] 李和昇(2016)。超高性能纖維混凝土之拉伸硬化行為與結構構件之撓曲行為。國立成功大學土木工程學系碩士論文,台南市。 取自https://hdl.handle.net/11296/4bh7sb
[2] 洪崇展、戴艾珍、顏誠皜、溫國威、張庭維(2017)。新世代多功能性混凝土材料-高性能纖維混凝土。土木水利,44(1),33-51。https://doi.org/10.6653/MoCICHE/2017.04401.05
[3] 溫國威(2018)。超高性能纖維混凝土梁構件之剪力行為研究。國立成功大學土木工程學系碩士論文,台南市。 取自https://hdl.handle.net/11296/25jern
[4] 經濟部標準檢驗局(1996)。中華民國國家標準CNS 2111 G2013 金屬材料拉伸試驗法。
[5] ACI Committee 318. (2014). Building Code Requirements for Structural Concrete (ACI 318-14): An ACI Standard : Commentary on Building Code Requirements for Structural Concrete (ACI 318R-14), an ACI Report. American Concrete Institute.
[6] ACI Committee 318. (2019). Building Code Requirements for Structural Concrete (ACI 318-19): An ACI Standard ; Commentary on Building Code Requirements for Structural Concrete (ACI 318R-19). American Concrete Institute.
[7] ACI Committee 544. (1988). Design Considerations for Steel Fiber Reinforced Concrete. ACI 544.4R-88(Reapproved 1999). American Concrete Institute.
[8] AFGC-SETRA. (2002). Ultra high performance fibre-reinforced concretes: Interim Recommendations. Association Francaise de Génie Civil-Service d'études techniques des routes et autoroutes.
[9] AFGC. (2013). Ultra high performance fibre-reinforced concretes: Recommandations. Association Francaise de Génie Civil.
[10] ASTM International. (2017). ASTM standard C1856/C1856M-17: Standard Practice for Fabricating and Testing Specimens of Ultra-High Performance Concrete. ASTM International. https://doi.org/10.1520/c1856_c1856m-17
[11] Chen, S., Zhang, R., Jia, L.-J., & Wang, J.-Y. (2018). Flexural behaviour of rebar-reinforced ultra-high-performance concrete beams. Magazine of Concrete Research, 70(19), 997-1015. https://doi.org/10.1680/jmacr.17.00283
[12] Fehling, E., & Leutbecher, T. (2011). Bemessung von Bauteilen aus UHPC. Vortrag vom, 9.
[13] Fehling, E., Schmidt, M., Walraven, J., Leutbecher, T., & Fröhlich, S. (2014). Ultra-high performance concrete UHPC : fundamentals, design, examples. Ernst & Sohn.
[14] Graybeal, B. A., & Baby, F. (2013). Development of direct tension test method for ultra-high-performance fiber-reinforced concrete. ACI Materials Journal, 110(2), 177.
[15] Han, T.-S., Feenstra, P. H., & Billington, S. L. (2003). Simulation of highly ductile fiber-reinforced cement-based composite components under cyclic loading. Structural Journal, 100(6), 749-757.
[16] Hasgul, U., Turker, K., Birol, T., & Yavas, A. (2018). Flexural behavior of ultra‐high‐performance fiber reinforced concrete beams with low and high reinforcement ratios. Structural Concrete, 19(6), 1577-1590. https://doi.org/10.1002/suco.201700089
[17] Henager, C. H., & Doherty, T. J. (1976). Analysis of reinforced fibrous concrete beams. Journal of the Structural Division, 102(1), 177-188.
[18] Hossain, K. M. A. (2014). Structural performance of ultra-high performance concrete beams. Research Report, Department of Civil Engineering, Ryerson University, 89p.
[19] Hung, C.-C., El-Tawil, S., & Chao, S.-H. (2021). A Review of Developments and Challenges for UHPC in Structural Engineering: Behavior, Analysis, and Design. Journal of Structural Engineering, 147(9), 03121001. https://doi.org/10.1061/(asce)st.1943-541x.0003073
[20] JSCE. (2006). Recommendations for Design and Construction of Ultra High Strength Fiber Reinforced Concrete Structures (Draft). Japan Society of Civil Engineers.
[21] Khalil, W. I., & Tayfur, Y. R. (2013). Flexural strength of fibrous ultra high performance reinforced concrete beams. ARPN Journal of Engineering and Applied Sciences, 8, 200-214.
[22] Kwak, Y. K., Eberhard, M. O., Kim, W. S., & Kim, J. (2002). Shear Strength of Steel Fiber-Reinforced Concrete Beams without Stirrups. ACI Structural Journal, 99(4), 530-538. https://doi.org/10.14359/12122
[23] Lim, W.-Y., & Hong, S.-G. (2016). Shear Tests for Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) Beams with Shear Reinforcement. International Journal of Concrete Structures and Materials, 10(2), 177-188. https://doi.org/10.1007/s40069-016-0145-8
[24] Liu, C., Zhang, Y., Yao, Y., & Huang, Y. (2019). Calculation method for flexural capacity of high strain-hardening ultra-high performance concrete T-beams. Structural Concrete, 20(1), 405-419. https://doi.org/10.1002/suco.201800151
[25] Narayanan, R., & Darwish, I. Y. S. (1987). Use of Steel Fibers as Shear Reinforcement. ACI Structural Journal, 84(3), 216-227. https://doi.org/10.14359/2654
[26] Shao, Y. (2020). Improving Ductility and Design Methods of Reinforced High-Performance Fiber-Reinforced Cementitious Composite (HPFRCC) Flexural Members [Doctoral dissertation, Stanford University]. https://purl.stanford.edu/ng567gr1449
[27] Shao, Y., & Billington, S. L. (2019). Predicting the two predominant flexural failure paths of longitudinally reinforced high-performance fiber-reinforced cementitious composite structural members. Engineering Structures, 199, 109581. https://doi.org/10.1016/j.engstruct.2019.109581
[28] Shao, Y., Hung, C.-C., & Billington, S. L. (2021). Gradual Crushing of Steel Reinforced HPFRCC Beams: Experiments and Simulations. Journal of Structural Engineering, 147(8), 04021114. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003080
[29] Sharma, A. K. (1986). Shear Strength of Steel Fiber Reinforced Concrete Beams. ACI Journal Proceedings, 83(4), 624-628. https://doi.org/10.14359/10559
[30] Yang, I.-H., Joh, C., & Bui, T. Q. (2019). Estimating the Tensile Strength of Ultrahigh-Performance Fiber-Reinforced Concrete Beams. Advances in Materials Science and Engineering, 2019. https://doi.org/10.1155/2019/5128029
[31] Yang, I. H., Joh, C., & Kim, B.-S. (2010). Structural behavior of ultra high performance concrete beams subjected to bending. Engineering Structures, 32(11), 3478-3487. https://doi.org/10.1016/j.engstruct.2010.07.017
[32] Yoo, D.-Y., & Yoon, Y.-S. (2016). A Review on Structural Behavior, Design, and Application of Ultra-High-Performance Fiber-Reinforced Concrete. International Journal of Concrete Structures and Materials, 10(2), 125-142. https://doi.org/10.1007/s40069-016-0143-x
校內:2026-10-01公開