| 研究生: |
鄭涵勻 Cheng, Han-Yuan |
|---|---|
| 論文名稱: |
應用梳狀電極設計於微型低頻穿戴式振動能源採集器之研究 Development of Micro Low-Frequency Wearable Vibration Energy Harvester by Electrostatic Comb-Drive |
| 指導教授: |
楊世銘
Yang, Shih-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 能源採集器 、人體能源 、振動-靜電轉換 |
| 外文關鍵詞: | Energy harvester, Human motion, Vibration-to-electrical, Comb-drive |
| 相關次數: | 點閱:159 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
穿戴式裝置發展至現今,電池續航力是面臨的最大且急需解決的問題之一。微型能源採集器可轉換周遭環境之能源為可供應之電源,並且不受使用壽命的限制,提供穿戴式裝置能源可靠之解決方案。人體作動可產生之頻率約為1Hz~2Hz之間,所以本論文提出一微型低頻穿戴式振動能源採集器,其由一頻率105Hz之靜電能源採集器為基礎並降低其共振頻率並希望尺寸限制於1cm×1cm×0.5cm以內來達到人體可產生之振動頻率範圍並能夠為型化將人體可產生之振動能轉為電能提供給電子產品使用。此設計提升了能源採集器可使用的頻率區間且尺寸為8mm×8mm×2.054mm符合預期之微型化目標。取用人類一般走路可達之頻率2Hz, 每一循環可產生能量0.0803 μJ及平均功率0.27 μW,提升了能源採集之功率。
In the development of wearable device, battery life is one of the most urgent problems and harvesting the kinetic or thermal energy into power provides a reliable solution to power supply. We proposed a micro electrostatic vibration energy harvester that can transform low frequency human motion in 1-2 Hz into electrical energy. The size of electrostatic vibration energy harvester in this thesis is 8mm×8mm×2.054mm, the mass , the stiffness of spring 0.022 N/m, and the natural frequency is 1.664 Hz. When the external vibration frequency is 1.664 Hz with amplitude 1200 μm, this energy harvester can provide 0.27 μW.
Amirtharajah, R., and Chandrakasan A. P., “Self-powered low power signal processing,” Proc. Tech. Dig. Papers Symp. VLSI Circuits, pp. 25-26, 1997.
Amirtharajah, R., and Chandrakasan A. P., “Self-powered signal processing using vibration-based power generation,” IEEE Journal of Solid-State Circuits, Vol. 33, No. 5, pp. 687-695, 1998.
Arakawa, Y., Suzuki, Y., and Kasagi, N., “Micro seismic power generator using electret polymer film,” Proc. Power MEMS, pp. 187-190, 2004.
Basset, P., Galayko, D., Paracha, A. M., Marty, F., Dudka, A., and Bourouina, T., “A batch-fabricated and electret-free silicon electrostatic vibration energy harvester,” Journal of Micromechanics and Microengineering, Vol. 19, No. 11, 115025, 2009.
Beeby, S. P., Torah, R. N., and Tudor, M. J., “Kinetic energy harvesting,” ACT Workshop on Innovative Concepts, ESA-ESTEC, pp. 1-10, 2008.
Cao, H., Leung, V., Chow, C., and Chan, H., “Enabling technologies for wireless body area networks: A survey and outlook,” Communications Magazine, IEEE, Vol. 47, No. 12, pp. 84-93, 2009.
Chalasani, S., and Conrad, J. M., “A survey of energy harvesting sources for embedded systems,” Southeastcon, IEEE, pp. 442-447, 2008.
Chiu, Y., and Tseng, V. F., “A capacitive vibration-to-electricity energy converter with integrated mechanical switches,” Journal of Micromechanics and Microengineering, Vol. 18, No. 10, 104004, 2008.
Dadfarnia, M., Sayrafian, K., Mitcheson, P., and Baras, J. S., “Maximizing output power of a CFPG micro energy-harvester for wearable medical sensors,” EAI 4th International Conference on Wireless Mobile Communication and Healthcare (Mobihealth), IEEE, pp. 218-221, 2014.
Francioso, L., De Pascali, C., Farella, I., Martucci, C., Cretì, P., Siciliano, P., and Perrone, A., “Flexible thermoelectric generator for ambient assisted living wearable biometric sensors,” Journal of Power Sources, Vol. 196, No. 6, pp. 3239-3243, 2011.
Fujita, T., “Energy harvesters for human-monitoring applications,” IEICE Transactions on Electronics, Vol. 96, No. 6, pp. 766-773, 2013.
Gaspar, J., Schmidt, M. E., Pedrini, G., Osten, W., & Paul, O., “Out-of-plane electrostatic microactuators with tunable stiffness,” Proceedings of IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), pp. 1131-1134, 2010.
Gorlatova, M., Sharik, J., Grebla, G., Cong, M., Kymissis, I., and Zussman, G., “Movers and shakers: Kinetic energy harvesting for the internet of things,” The 2014 ACM International Conference on Measurement and Modeling of Computer Systems, pp. 407-419, 2014.
Guilllemet, R., Basset, P., Galayko, D., Cottone, F., Marty, F., and Bourouina, T., “Wideband MEMS electrostatic vibration energy harvesters based on gap-closing interdigited combs with a trapezoidal cross section,” IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), pp. 817-820, 2013.
Hoffmann, D., Folkmer, B., and Manoli, Y. “Fabrication, characterization and modelling of electrostatic micro-generators,” Journal of Micromechanics and Microengineering, Vol. 19, No. 9, 094001, 2009.
Ju, S., Chae, S. H., Choi, Y., and Ji, C. H., “Macro fiber composite-based low frequency vibration energy harvester,” Sensors and Actuators A: Physical, Vol. 226, pp. 126-136, 2015.
Leonov, V. “Simulation of maximum power in the wearable thermoelectric generator with a small thermopile,” Microsystem Technologies, Vol. 17, No. 4, pp. 495-504, 2011.
Le, C. P., Halvorsan, E., Sorasen, O., and Yeatmean, E. M., “Wideband excitation of an electrostatic vibration energy harvester with power-extracting end-stops,” Smart Materials and Structures, Vol. 22, No. 7, 075020, 2013.
Lee, J. M., Yuen, S. C., Li, W. J., and Leong, P. H. W., “Development of an AA size energy transducer with micro resonators,” Proceedings of the International Symposium on Circuits and Systems, Vol. 4, pp. 876-879, 2003.
Lee, S. H. “Development of high-efficiency silicon solar cells for commercialization,” Journal Korean Physical Society, Vol. 39, No. 2, pp. 369-373, 2001.
Lee, T., “Development of multilayered quantum well thermoelectric and low frequency vibration energy harvesters,” Ph.D. Thesis, National Cheng Kung University, 2008.
Liu, P., Yang, F., Wang, W., Luo, K., Wang, Y., and Zhang, D., “ Hard mask free DRIE of crystalline Si nanobarrel with 6.7 nm wall thickness and 50∶ 1 aspect ratio,” 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp. 77-80, 2015.
Meninger, S., Mur-Miranda, J. O., Amirtharajah, R., Chandrakasan, A. P., and Lang, J. H., “Vibration-to-electric energy conversion,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 9, No. 1, pp. 64-76, 2001.
Mitcheson, P. D., Yeatman, E. M., Rao, G. K., Holmes, A. S., and Green, T. C., “Energy harvesting from human and machine motion for wireless electronic devices,” Proceedings of the IEEE, Vol. 96, No. 9, pp. 1457-1486, 2008.
Mitcheson, P. D., Sterken, T., He, C., Kiziroglou, M., Yeatman, E. M., and Puers, R., “Electrostatic microgenerators,” Measurement and Control, Vol. 41, No. 4, pp. 114-119, 2008.
Miyazaki, M., Tanaka, H., Ono, G., Nagano, T., Ohkubo, N., Kawahara, T., and Yano, K., “Electric-energy generation using variable-capacitive resonator for power-free LSI: efficiency analysis and fundamental experiment,” Proceedings of IEEE the International Symposium on Low Power Electronics and Design, pp. 193-198, 2003.
Mur-Miranda, J. O., “Electrostatic vibration-to-electric energy conversion,” PhD. Dissertation, Massachusetts Institute of Technology, 2004.
Naruse, Y., Matsubara, N., Mabuchi, K., Izumi, M., and Suzuki, S., “Electrostatic micro power generation from low-frequency vibration such as human motion,” Journal of Micromechanics and Microengineering, Vol. 19, No. 9, 094002, 2009.
Nounou, A. and Ragaie, H. F., “A lateral comb-drive structure for energy scavenging,” International Conference on Electrical, Electronic and Computer Engineering, pp. 553–556, 2004.
Pan, S., Yang, Z., Chen, P., Deng, J., Li, H., and Peng, H., “Wearable solar cells by stacking textile electrodes,” Angewandte Chemie, Vol.126 No.24, pp. 6224-6228, 2014.
Paracha, A. M., Basset, P., Lim, P. C., Marty, F., & Bourouina, T., “A bulk silicon-based vibration-to-electric energy converter using an in-plane overlap plate (IPOP) mechanism,” In PowerMEMS’ Workshop Proceedings, 2006.
Paradiso, J. A., and Starner, T., “Energy scavenging for mobile and wireless electronics,” Pervasive Computing of IEEE, Vol. 4, No. 1, pp. 18-27, 2005.
Riemer, R., and Shapiro, A., “Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions,” Journal of Neuroengineering and Rehabilitation, Vol. 8, No. 1, pp.22, 2011.
Rome, L. C., Flynn, L., Goldman, E. M., and Yoo, T. D., “Generating electricity while walking with loads,” Science, Vol. 309, pp. 1725–1728, 2005.
Roundy, S., Wright, P. K., and Rabaey, J., “A study of low level vibrations as a power source for wireless sensor nodes,” Computer Communications, Vol. 26, No. 11, pp. 1131-1144, 2003.
Roundy, S., “Energy scavenging for wireless sensor nodes with a focus on vibration to electricity conversion,” Ph.D. Dissertation, UC Berkeley, 2000.
Roundy, S., Wright, P.K., and Rabaey, J., “Energy scavenging for wireless sensor networks with special focus on vibrations,” Kluwer Academic Publishers, 2003.
Rowe, D.M., “Thermoelectrics handbook: macro to nano,” CRC, Boca Raton, FL/Taylor & Francis, Boca Raton, 2006.
Shearwood, C., Yates, R. B., “Development of an electromagnetic micro-generator,” Electronics Letters, Vol. 33, No. 22, pp. 1883-1884, 1997.
Shenck, N. S., and Paradiso, J. A., “Energy scavenging with shoe-mounted piezoelectrics,” IEEE Micro, Vol. 21, No. 3, pp. 30-42, 2001.
Sheu, G. J., Yang, S. M., and Lee, T. “Development of a low frequency electrostatic comb-drive energy harvester compatible to SoC design by CMOS process,” Sensors and Actuators A: Physical, Vol. 167, No. 1, pp. 70-76, 2011.
Starner, T., “Human-powered wearable computing,” IBM Systems Journal, Vol. 35, No. 3-4, pp.618-629, 1996.
Suzuki, Y., “Development of a MEMS energy harvester with high-perfomance polymer electrets,” In Digest Tech. 10th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2010), pp. 47-52, 2010.
Sue, C. Y., and Tsai, N. C., “Human powered MEMS-based energy harvest devices,” Applied Energy, Vol. 93, pp. 390-403, 2012.
Syeda, U., and Memona, A., “Design and manufacturing of solar jacket for charging the mobile and laptop devices,” International Journal of Current Engineering and Technology, Vol. 2, No. 4, pp. 365-368, 2012.
Torah, R., Beeby, S. P., Tudor, M. J., O'Donnell, T., and Roy, S. “Development of a cantilever beam generator employing vibration energy harvesting,” Proceedings of the 6th Internal Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, Berkeley, CA, pp. 181-184, 2006.
Torres, E. O., and Rincón-Mora, G. A. “Long-lasting, self-sustaining, and energy-harvesting system-in-package (SiP) wireless micro-sensor solution,” International Conference on Energy, Environment, and Disasters (INCEED), Charlotte, NC, USA, pp. 1-33, 2005.
Vullers, R. J. M., van Schaijk, R., Doms, I., Van Hoof, C., and Mertens, R., “Micropower energy harvesting,” Solid-State Electronics, Vol. 53, No. 7, pp. 684-693, 2009.
Wahbah, M., Alhawari, M., Mohammad, B., Saleh, H., and Ismail, M., “Characterization of human body-based thermal and vibration energy harvesting for wearable devices,” IEEE Journal of Emerging and Selected Topics in Circuits and Systems, Vol. 4, No. 3, pp.354-363, 2014.
Williams, C. B., and Yates, R. B., “Analysis of a micro-electric generator for microsystems,” Sensors and Actuators A: Physical, Vol. 52, No. 1, pp. 8-11, 1996.
Yang, B., Lee, C., Kotlanka, R. K., Xie, J., and Lim, S. P., “A MEMS rotary comb mechanism for harvesting the kinetic energy of planar vibrations,” Journal of Micromechanics and Microengineering, Vol. 20, No. 6, 065017, 2010.
Yang, B., and Yun, K. S., “Piezoelectric shell structures as wearable energy harvesters for effective power generation at low-frequency movement,” Sensors and Actuators A: Physical, Vol. 188, pp. 427-433, 2012.
Yang, G. Z., and Yacoub, M., “Body sensor networks,” Springer, 2006.
Yun, J., Patel, S. N., Reynolds, M. S., and Abowd, G. D., “Design and performance of an optimal inertial power harvester for human-powered devices,” IEEE Transactions of Mobile Computing, Vol. 10, No. 5, pp. 669-683, 2011.