簡易檢索 / 詳目顯示

研究生: 黃俊瑋
Huang, Jun-wei
論文名稱: 河川底泥材料資源化應用
Reuse and Reutilization of a Material Made form River Bottom Sludge
指導教授: 黃忠信
HUANG, JONG-SHIN
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 101
中文關鍵詞: 淤泥改質技術無機聚合物河川底泥
外文關鍵詞: modified reservoir sludge technology, inorganic polymer, river bottom sludge.
相關次數: 點閱:67下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討如何將河川底泥材料資源化,並利用「水庫淤泥改質技術」及無機聚合膠結材製作,期許達到大量消耗河川底泥的目的。首先,藉由底泥組成成分分析,以了解不同組成對改質前後及無機聚合膠結材之影響,並藉由TCLP及有機質含量試驗確認河川底泥未受重金屬與有機質之汙染,接下來,利用CEC試驗藉此配製適當改質劑添加量並將河川底泥改質為一穩定且不吸水材料,由TGA及FTIR試驗證明底泥內確實有改質劑存在,進而將改質後河川底泥部分取代水泥砂漿中之細粒料,並藉抗壓試驗、吸水試驗及透水試驗,探討不同改質底泥取代量對水泥砂漿工程性質之影響。最後,將改質完成後河川底泥與改質後水庫淤泥進行比較。試驗結果得知,各碼頭改質後河川底泥有機質含量皆上升,而各碼頭黏土含量越高所拌製成水泥砂漿試體抗壓強度越低,且隨著改質河川底泥取代細粒料量之增加而強度降低,但仍擁有絕佳之防水效果,並只需取代10%細粒料,即可大幅降低吸水量及提升抗透水性,與水庫淤泥改質結果比較結果發現,兩者皆隨底泥取代量上升而強度下降,並只需少許取代量便擁有絕佳之防水效能。另外將河川底泥應用於無機聚合膠結材,並與水庫淤泥採相同原料,仿傳統高嶺土無機聚合製作方法,藉煅燒提升河川底泥之活性,進而取代高嶺土為無機聚合膠結材之粉料。本研究利用煅燒850℃之河川底泥為原料,以70 %煅燒河川底泥及30 %爐石製作無機聚合膠結材,藉由改變鹼激發劑之鹼當量及鹼模數,觀察其對抗壓強度之影響,最後將其與水庫淤泥所製之無機聚合膠結材進行比較。試驗結果指出,隨著黏土含量越高所拌製成的無機聚合膠結材強度也越高,且所需配製鹼當量及鹼模數也較高,由大稻埕碼頭、敦煌碼頭、中港河碼頭、三腳渡碼頭及大佳河濱公園碼頭所製成之無機聚合膠結材,其齡期28天之最佳抗壓強度分別為446.2 kgf/cm2、406.2 kgf/cm2、672.4 kgf/cm2、577.9 kgf/cm2及471.4 kgf/cm2,皆具有不錯的抗壓強度,說明以河川底泥應用於無機聚合上,極具發展空間,但相較於水庫淤泥所拌製之無機聚合膠結材,無論在強度上或成本上皆較為遜色。

    This experiment is about how to make the bottom mud of rivers become resources in order to enlarge consumption the bottom mud by using the "modified reservoir sludge technology" and inorganic polymer cement material production. First, in order to understand the different compositions between the the ahead of Inwardness and the latest Inwardness by analyzing the composition of the bottom sediment of the rivers, and the relevance of the inorganic polymer, and then by using TCLP and organic matter content to confirm the bottom mud of the rivers was not pollute by heavy metals and organic pollution. Second, change the bottom mud of the rivers to a stable and non-absorbent material by using CEC test and add the appropriate amount of modifier. Then, by using the changed Inwardness and non-changed Inwardness of the bottom mud of the rivers to make TGA and FTIR experiments, to prove there indeed existence the modifier, and to replace the fine aggregate of cement mortar further. Third, by compression test, permeability test and water absorption test to discuss the influence of replace quality of the changed Inwardness of the bottom mud of the rivers to the cement mortar engineer. Finally, to compare the modified river sediments with the modified reservoir silt. The conclusion shows that the organic matter content in modified river sediment has increased, but if the mixed cement mortars of the terminal’s sediment organic matters content the higher ascendant, the compressive strength is lower , and with the modification of river sediment to replace the fine feeding amount increased intensity decreased, but the edge has an excellent waterproof effect, and only needs to replace 10% of the fine aggregates can substantially reduce water absorption and improve resistance to water penetration. Finally, the river sediment is used in inorganic polymer cement material, and modification of reservoir sediment mining the same material, imitating the traditional production method of polymerization of inorganic kaolin, calcined by enhancing the activity of river sediment, and then replaces the kaolin as inorganic polymeric materials of cement powder. In this study, by using 850 ℃ calcined river sediment of raw materials, 70% river sediment and 30% calcined slag cement production of inorganic polymer materials, by changing the alkali activation of the alkali and alkali equivalent modulus and other control factors, the effect observed on the compressive strength, and finally to compared with the inorganic polymer of reservoir silt. The results pointed out that with the higher clay content made by mixed cement, inorganic polymeric materials have higher strength, and the preparation of the required equivalent of alkali and alkaline modulus is also higher. The inorganic polymeric cement made from Dadaocheng Dock、Dunhuang Dock、Jhonggan River Dock、Sancjieudo Dock and DaJia Riverbank Park Dock to achieve the goal of 28 days, the best compressive strength were 446.2 kgf/cm2, 406.2 kgf/cm2, 672.4 kgf/cm2, 577.9 kgf/cm2 and 471.4 kgf/cm2, all of which achieve good strength, indicating to the river sediment used in polymerization of the inorganic , with room for development.

    摘要 I Abstract III 誌謝 V 目錄 VI 表目錄 VIII 圖目錄 X 第一章 緒論 1 1.1 研究動機及目的 1 1.2 本文組織與內容 2 第二章 相關理論與文獻回顧 4 2.1 淤泥改質原理及其應用 4 2.2 淤泥之資源化應用 5 2.3 無機聚合膠結材之特性 5 2.4 無機聚合膠結材之組成 6 2.4.1 煅燒後河川底泥 6 2.4.2 爐石 7 2.4.3 鹼性溶液 8 2.4.4 鹼金屬矽酸鹽溶液 8 2.5 無機聚合膠結材之原理 9 第三章 研究方法與試驗步驟 15 3.1試驗規劃 15 3.1.1 河川底泥之改質 15 3.1.2 水泥砂漿試體 16 3.1.3 無機聚合膠結材試體 16 3.2試驗材料及儀器設備 16 3.2.1 試驗材料 16 3.2.2 儀器設備 18 3.3試驗流程及方法 20 3.3.1 河川底泥改質流程 20 3.3.2 河川底泥之煅燒與粉碎 21 3.3.3 改質水河川泥之性質分析 21 3.3.3.1熱重分析試驗(TGA) 21 3.3.3.2傅立業紅外線光譜分析 22 3.3.3.3有害事業廢棄物毒性特性溶出試驗 (TCLP) 22 3.3.3.4陽離子交換當量(CEC) 22 3.3.3.5含水率試驗 23 3.3.3.6有機質分析 23 3.3.3.7底泥組成分析 23 3.3.4 改質底泥水泥砂漿試體配比設計 24 3.3.4.1 試體製作 24 3.3.4.2 流度試驗 24 3.3.5 水泥砂漿抗壓強度試驗 25 3.3.6 吸水試驗 25 3.3.7 透水試驗 26 3.4. 無機聚合膠結材配比設計 26 3.4.1 無機聚合膠結材試體製作 27 3.4.2 無機聚合膠結材抗壓強度試驗 28 第四章 試驗結果與討論 42 4.1 改質河川底泥特性 42 4.1.1 熱重試驗分析(TGA) 42 4.1.2 FTIR分析 42 4.1.3 TCLP分析 43 4.1.4 陽離子交換當量(CEC)試驗 43 4.1.5 含水率試驗 44 4.1.6 有機質分析 44 4.1.7 底泥組成分析 45 4.2 改質底泥水泥砂漿流度及抗壓強度 46 4.3 吸水及透水性 47 4.3.1 吸水試驗 47 4.3.2 透水試驗 48 4.4 改質河川底泥與改質水庫淤泥之異同 49 4.5 無機聚合膠結材鹼激發劑最佳配比 52 4.6 河川底泥無機聚合膠結材與水庫淤泥無機聚合膠結 54 材之異同 54 第五章 結論與建議 97 參考文獻 99

    [1] 黃忠信,郭文毅,彭淑娟,「水庫淤泥生態性利用之整體研究」,
    國立成功大學,(2004)。

    [2] 陳志榮,「改質水庫淤泥對水泥砂漿工程性質之影響」,國立成
    功大學土木工程研究所,碩士論文,(2005)。

    [3] 施國欽,「大地工程學(一)土壤力學篇」,文笙書局,(1996)。

    [4] 孫筱芳,「蒙脫石插層幾丁聚醣之研究」,國立成功大學資源工
    程學系碩博士班,碩士論文,P36-37,(2003)。

    [5] 代新祥,「鹼激活土聚水泥的製備、結構與性能」,博士論文,
    華南理中大學,2005。

    [6] 張瑜文,「水庫淤泥應用於無機聚合膠結材」,國立成功大學
    土木工程研究所,碩士論文,(2008)。

    [7] 王秋閔,「營建剩餘土應用於無機聚合膠結材」,國立成功大
    學土木工程研究所,碩士論文,(2009)。

    [8] Phair, J. W. and Van Deventer, J. S. J., “Effect of
    Silicate Activator pH on Leaching of Waste Based
    inorganic polymer,” Minerals Engineering, Vol. 14,
    No. 3, pp. 289-304, 200l.

    [9] Phair, J. W. and Van Deventer, J. S. J., “Effect of
    Silicate Activator pH on Leaching of Waste Based
    inorganic polymer,” Minerals Engineering, Vol. 14,
    No. 3, pp. 289-304, 200l.

    [10] Yip, C. K., Lukey, G. C. and van Deventer* J. S.
    J., “The coexistence of geopolymeric gel and calcium
    silicate hydrateat the early stage of alkaline
    activation,” Cement and Concrete Research,
    Vol. 35, pp. 1688-1697, 2005.

    [11] Xu, H. and Van Deventer, J. S. J., “The
    geopolymerisation of alumino- silicate minerals,”
    International Journal Minerals Process,
    Vol. 59, pp. 247-266, 2000.

    [12] Xu, H., Van Deventer, J. S. J. and Lukey, G.
    C., “Effect of alkali metals on the preferential
    geopolymerization of stilbite/kaolinite
    mixtures,” International Engineering Chemical
    Research, Vol. 40,pp. 3749-3756, 2001

    [13] H.A.neidig,Joe Jeffers “Identifying an Unknown
    Compound by InfraredSpectroscopy ” ,pp.3-5

    [14] Van Jaarsveld, J. G. S. and Van Deventer, J. S.
    J., “Effect of the alkali metal activator on the
    properties of fly ash-based geopolymers,”
    International Engineering Chemical Research, Vol.
    38, pp. 3932-3941, 1999

    [15] 代新祥,「鹼激活土聚水泥的製備、結構與性能」,博士論文,
    華南理中大學,2005。

    [16] Davidovits, J., “Method for obtaining a geopolymeric
    binder allowing to stabilize, solidify and
    consolidate toxic or waste materials,” United States
    Patent 5,349,118, 1994.

    [17] CNS3763,「水泥防水劑」,2001。

    無法下載圖示 校內:2012-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE