簡易檢索 / 詳目顯示

研究生: 吳俊億
Wu, Jyun-Yi
論文名稱: 應用布穀鳥搜尋演算法於氣動軟性機器手之最佳化設計
Optimal Design of a Soft Pneumatic Robotic Hand Using Cuckoo Search Algorithm
指導教授: 劉至行
Liu, Chih-Hsing
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 139
中文關鍵詞: 布穀鳥搜尋演算法啟發式演算法尺寸最佳化氣動軟性致動器氣動軟性機器手
外文關鍵詞: cuckoo search algorithm, metaheuristic algorithm, size optimization, soft pneumatic actuator, soft pneumatic robotic hand
相關次數: 點閱:135下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究結合有限元素分析軟體Ansys與布穀鳥搜尋演算法,開發一套可適於氣動軟性致動器的尺寸最佳化設計流程,致動器使用矽膠材料以氣壓輸入作為力量來源,並結合五個致動器,製作出一組模仿人類手部的氣動軟性機器手。本研究將致動器區分為實心體與氣囊設計,各代表不可彎曲的指節與可彎曲的關節構造,並以彎曲最大化為目標函數,針對氣囊結構分別進行正壓、負壓、與同時包含正負壓的複合式條件的尺寸最佳化。在最佳化過程中使用有限元素分析軟體Ansys計算目標函數,將氣囊化簡為四分之一模型以降低運算時間,經過比較挑選,複合式條件中權重比為0.5的尺寸結果在正壓與負壓的綜合彎曲表現最佳,並以此結果進行致動器實體的試做。完成製作後,本研究先對單一致動器進行空負載的彎曲測試與驗證,正壓彎曲與模擬的平均誤差為9.6%,最大壓力35kPa下末端點彎曲角度可達110^o;負壓彎曲與模擬的平均誤差僅為2.4%,最大壓力-20kPa下末端點彎曲角度可達28^o,而單一致動器在正壓50kPa的輸入下推力最大為0.7N。最後將五個致動器組為氣動軟性機器手,以兩種方向對機器手進行負重測試,在50kPa的氣壓輸入下,垂直抓握最大負重為2.17kg,平行抓握最大負重為0.66kg,最大開度透過負壓輸入可提升4.35倍,最大夾取尺寸為直徑150mm之圓球,並進行多種實物夾取與人類手部姿態的模仿實驗,結果顯示本研究的機器手設計,在整體抓握姿態與人類手掌展現出良好的吻合度。

    This study presents a size optimization method that combines the finite element analysis software ANSYS and the cuckoo search algorithm to design a soft pneumatic actuator. In addition, a soft pneumatic robotic hand is designed by combination of five actuators which are made of silicone material through the molding process. In order to mimic the human fingers, this study divides an actuator into two parts. One is the solid bodies that symbolize the bones of fingers;the other is air chambers that symbolize the finger joints. The main goal in this study is to maximize the bending ability. The air chamber is the design domain, and its geometric parameters are design variables. The size optimization is executed under three different conditions including positive pressure, negative pressure, and the compound condition with both positive and negative pressure. The bending tests of the actuator, payload and grasping tests of the robotic hand were implemented. Experimental results show that the average error between experiment and simulation is 9.6% at positive pressure and 2.38% at negative pressure. The maximum bending angle is 110 degrees at 35kPa, and 28 degrees at -20kPa. The payload tests can be divided into two categories. One is perpendicular to the direction of gravity, the other is parallel to the direction of gravity. The maximum payloads are 2.17kg and 0.66kg respectively, when the pressure is 50kPa. Because of the consideration of the negative pressure, the maximum gripping range is increased by 4.35 times. After grasping tests, the design of the robotic hand in this study shows good fit with human hand in most grasping postures.

    摘要 i ABSTRACT ii 致謝 xiii 表目錄 xvii 圖目錄 xviii 符號說明 xxv 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 4 1-2-1 尺寸最佳化與啟發式演算法文獻回顧 4 1-2-2 氣動軟性機器手文獻回顧 7 1-2-3 氣動軟性致動器最佳化文獻回顧 11 1-3 研究目的 14 1-4 本文架構 15 第二章 基礎理論 16 2-1 前言 16 2-2 Ogden超彈性材料模型 16 2-3 最佳化理論:布穀鳥搜尋演算法 17 2-3-1 隨機漫步 17 2-3-2 萊維飛行 18 2-3-3 布穀鳥搜尋演算法 21 2-4 尺寸最佳化流程 25 2-5 本章小結 28 第三章 氣動軟性致動器最佳化設計 29 3-1 前言 29 3-2 材料拉伸試驗 29 3-3 幾何模型建立 35 3-4 最佳化參數設計 37 3-5 目標函數與邊界條件設定 42 3-6 尺寸最佳化結果 44 3-6-1 正壓彎曲結果 46 3-6-2 負壓彎曲結果 49 3-6-3 複合目標彎曲結果 52 3-7 最佳化結果討論 54 3-8 本章小結 74 第四章 氣動軟性致動器有限元素分析 75 4-1 前言 75 4-2 致動器模擬流程 75 4-3 致動器模型建立 76 4-4 有限元素分析 80 4-5 本章小結 90 第五章 氣動軟性機器手設計與驗證 91 5-1 前言 91 5-2 氣動軟性致動器試做 91 5-2-1 治具與致動器之氣密改良設計 91 5-2-2 致動器模具設計 94 5-2-3 致動器製作流程 98 5-3 致動器空負載測試與驗證 101 5-4 氣動軟性致動器推力測試 108 5-5 氣動軟性機器手設計與試做 110 5-5-1 手掌與手指設計 110 5-5-2 最大負載實驗 114 5-5-3 夾取範圍測試 120 5-5-4 手部型態模仿 121 5-5-5 實物夾取實驗 124 5-6 相關文獻中軟性機器手規格之介紹與比較 128 5-7本章小結 131 第六章 結論與建議 132 6-1 結論 132 6-2 建議 133 參考文獻 136

    [1] 直覺手術公司網站. https://www.intuitive.com/en-us.
    [2] 巴德爾醫療輔助公司網站. https://www.baldur.com.tw/.
    [3] ShodowRobot公司網頁. https://www.shadowrobot.com/.
    [4] R. B. Scharff, E. L. Doubrovski, W. A. Poelman, P. P. Jonker, C. C. Wang, and J. M. Geraedts, "Towards Behavior Design of a 3D-Printed Soft Robotic Hand," in Soft Robotics: Trends, Applications and Challenges: Springer, 2017, pp. 23-29.
    [5] R. Deimel and O. Brock, "A novel type of compliant and underactuated robotic hand for dexterous grasping," The International Journal of Robotics Research, vol. 35, no. 1-3, pp. 161-185, 2016.
    [6] D. Rus and M. T. Tolley, "Design, fabrication and control of soft robots," Nature, vol. 521, no. 7553, pp. 467-475, 2015.
    [7] J. Shintake, V. Cacucciolo, D. Floreano, and H. Shea, "Soft robotic grippers," Advanced Materials, vol. 30, no. 29, 2018.
    [8] Softrobotics公司網頁. https://www.softroboticsinc.com/.
    [9] EMPIRE-ROBOTICS公司網頁. https://www.empirerobotics.com/.
    [10] OnRobot公司網頁. https://onrobot.com/en.
    [11] L. A. Schmit, "Structural design by systematic synthesis," Proceedings of the Second National Conference on Electronic Computation, ASCE, 1960.
    [12] M. Papadrakakis, N. D. Lagaros, Y. Tsompanakis, and V. Plevris, "Large scale structural optimization: computational methods and optimization algorithms," Archives of Computational Methods in Engineering, vol. 8, no. 3, pp. 239-301, 2001.
    [13] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons. 2001.
    [14] L. J. Fogel, A. J. Owens, and M. J. Walsh, Artificial Intelligence through Simulated Evolution. John Wiley & Sons. 1966.
    [15] J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. U Michigan Press. 1975.
    [16] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by simulated annealing," Science, vol. 220, no. 4598, pp. 671-680, 1983.
    [17] M. Dorigo, M. Birattari, and T. Stutzle, "Ant colony optimization," IEEE Computational Intelligence Magazine, vol. 1, no. 4, pp. 28-39, 2006.
    [18] J. Kennedy and R. Eberhart, "Particle swarm optimization," Proceedings of ICNN'95-International Conference on Neural Networks, 1995, vol. 4: IEEE, pp. 1942-1948.
    [19] X.-S. Yang and A. Slowik, "Firefly Algorithm," in Swarm Intelligence Algorithms: CRC Press, 2020, pp. 163-174.
    [20] A. H. Gandomi, X.-S. Yang, and A. H. Alavi, "Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems," Engineering with Computers, vol. 29, no. 1, pp. 17-35, 2013.
    [21] X.-S. Yang and S. Deb, "Cuckoo search via Lévy flights," Proceedings of World Congress on Nature & Biologically Inspired Computing (NaBIC), 2009.
    [22] S. Walton, O. Hassan, K. Morgan, and M. Brown, "Modified cuckoo search: a new gradient free optimisation algorithm," Chaos, Solitons & Fractals, vol. 44, no. 9, pp. 710-718, 2011.
    [23] M. C. Carrozza, S. Micera, B. Massa, M. Zecca, R. Lazzarini, N. Canelli, and P. Dario, "The development of a novel biomechatronic hand-ongoing research and preliminary results," 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Proceedings, 2001, pp. 249-254.
    [24] M. C. Carrozza, C. Suppo, F. Sebastiani, B. Massa, F. Vecchi, R. Lazzarini, M. R. Cutkosky, and P. Dario, "The SPRING hand: development of a self-adaptive prosthesis for restoring natural grasping," Autonomous Robots, vol. 16, no. 2, pp. 125-141, 2004.
    [25] T. Laliberté and C. M. Gosselin, "Simulation and design of underactuated mechanical hands," Mechanism and Machine Theory, vol. 33, no. 1-2, pp. 39-57, 1998.
    [26] M. C. Carrozza, G. Cappiello,G. Stellin, F. Zaccone, F. Vecchi, S. Micera, and P. Dario, "A cosmetic prosthetic hand with tendon driven under-actuated mechanism and compliant joints: ongoing research and preliminary results," Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005: IEEE, pp. 2661-2666.
    [27] S. Terryn, J. Brancart, D. Lefeber, G. Van Assche, and B. Vanderborght, "Self-healing soft pneumatic robots," Science Robotics, vol. 2, no. 9, 2017.
    [28] H. Zhao, K. O’Brien, S. Li, and R. F. Shepherd, "Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides," Science Robotics, vol. 1, no. 1, 2016.
    [29] J. Zhou, J. Yi, X. Chen, Z. Liu, and Z. Wang, "BCL-13: A 13-DOF soft robotic hand for dexterous grasping and in-hand manipulation," IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 3379-3386, 2018.
    [30] Y. Sun, Y. S. Song, and J. Paik, "Characterization of silicone rubber based soft pneumatic actuators," Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013.
    [31] Z. Wang and S. Hirai, "Soft gripper dynamics using a line-segment model with an optimization-based parameter identification method," IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 624-631, 2017.
    [32] Z. Wang and S. Hirai, "Chamber dimension optimization of a bellow-type soft actuator for food material handling," Proceedings of IEEE International Conference on Soft Robotics 2018.
    [33] 陳立峻, 拓樸最佳化於氣動軟性彎曲致動器設計之研究, 國立成功大學機械工程學系碩士學位論文2020.
    [34] Smooth-On公司網頁. https://www.smooth-on.com/.
    [35] Z. Wang, K. Or, and S. Hirai, "A dual-mode soft gripper for food packaging," Robotics and Autonomous Systems, vol. 125, 2020.
    [36] M. Mooney, "A theory of large elastic deformation," Journal of Applied Physics, vol. 11, no. 9, pp. 582-592, 1940.
    [37] O. H. Yeoh, "Some forms of the strain energy function for rubber," Rubber Chemistry and Technology, vol. 66, no. 5, pp. 754-771, 1993.
    [38] R. W. Ogden, "Large deformation isotropic elasticity–on the correlation of theory and experiment for incompressible rubberlike solids," Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 326, no. 1567, pp. 565-584, 1972.
    [39] X.-S. Yang, Nature-Inspired Metaheuristic Algorithms. Luniver press. 2010.
    [40] D. Brockmann, L. Hufnagel, and T. Geisel, "The scaling laws of human travel," Nature, vol. 439, no. 7075, pp. 462-465, 2006.
    [41] P. Lévy, Théorie De L'addition Des Variables Aléatoires. Gauthier-Villars. 1954.
    [42] A. M. Reynolds and M. A. Frye, "Free-flight odor tracking in Drosophila is consistent with an optimal intermittent scale-free search," PlOS ONE, vol. 2, no. 4, p. e354, 2007.
    [43] N. E. Humphries, H. Weimerskirch, N. Queiroz, E. J. Southall, and D. W. Sims, "Foraging success of biological Lévy flights recorded in situ," Proceedings of the National Academy of Sciences, vol. 109, no. 19, pp. 7169-7174, 2012.
    [44] X.-S. Yang and S. Deb, "Multiobjective cuckoo search for design optimization," Computers & Operations Research, vol. 40, no. 6, pp. 1616-1624, 2013.
    [45] R. N. Mantegna, "Fast, accurate algorithm for numerical simulation of Levy stable stochastic processes," Physical Review E, vol. 49, no. 5, p. 4677, 1994.
    [46] 楊示豪, 結合近鄰吸引之修正螢火蟲演算法於橡膠隔振器之幾何最佳化設計,國立成功大學機械工程學系碩士學位論文2020.
    [47] CNS 3553:2016 硫化或熱塑性橡膠-拉伸應力-應變性質之測定, 中華民國國家標準, 2016.
    [48] G. Berselli, R. Vertechy, M. Pellicciari, and G. Vassura, Hyperelastic Modeling of Rubber-Like Photopolymers for Additive Manufacturing Processes. InTech. 2011.
    [49] Z. Wang, Y. Torigoe, and S. Hirai, "A prestressed soft gripper: design, modeling, fabrication, and tests for food handling," IEEE Robotics and Automation Letters, vol. 2, no. 4, pp. 1909-1916, 2017.
    [50] Y. Hao, T. Wang, Z. Ren, Z. Gong, H. Wang, X. Yang, S. Guan, and L. Wen, "Modeling and experiments of a soft robotic gripper in amphibious environments," International Journal of Advanced Robotic Systems, vol. 14, no. 3, 2017.
    [51] C. B. Teeple, T. N. Koutros, M. A. Graule, and R. J. Wood, "Multi-segment soft robotic fingers enable robust precision grasping," The International Journal of Robotics Research, vol. 39, no. 14, pp. 1647-1667, 2020.
    [52] M. A. Devi, G. Udupa, and P. Sreedharan, "A novel underactuated multi-fingered soft robotic hand for prosthetic application," Robotics and Autonomous Systems, vol. 100, pp. 267-277, 2018.
    [53] H. Wang, F. J. Abu-Dakka, T. N. Le, V. Kyrki, and H. Xu, "A Novel Soft Robotic Hand Design With Human-Inspired Soft Palm: Achieving a Great Diversity of Grasps," IEEE Robotics & Automation Magazine, vol. 28, no. 2, pp. 37-49, 2021.
    [54] A. Yamaguchi, K. Takemura, S. Yokota, and K. Edamura, "A robot hand using electro-conjugate fluid," 2011 IEEE International Conference on Robotics and Automation, 2011, pp. 5923-5928.
    [55] H. Zhang, A. S. Kumar, F. Chen, J. Y. Fuh, and M. Y. Wang, "Topology optimized multimaterial soft fingers for applications on grippers, rehabilitation, and artificial hands," IEEE/ASME Transactions on Mechatronics, vol. 24, no. 1, pp. 120-131, 2018.
    [56] 台夫特理工大學網站. https://www.tudelft.nl/.

    無法下載圖示 校內:2026-08-18公開
    校外:2026-08-18公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE