簡易檢索 / 詳目顯示

研究生: 藍功安
Lan, Gong-An
論文名稱: 純錫與錫基銲料合金之通電破壞特性研究
A Study on the Electrification Fracture Characteristics of Pure Sn and Sn-Based Solder Alloys
指導教授: 陳立輝
Chen, Li-Hui
呂傳盛
Lui, Truan-Sheng
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 110
中文關鍵詞: 無鉛銲錫通電熔融誘發破壞臨界熔斷電流密度熔融路徑
外文關鍵詞: Lead-Free Solder, Electrification-Fusion Induced Fracture, Critical Fusion Current Density, Fusion Path
相關次數: 點閱:76下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電子產品尺寸微小化使得銲點在通電狀態極有可能面臨熔融失效;此外,為了因應無鉛化需求,開發耐電流負荷的無鉛銲料乃成為急需著手的目標。為了調查電子產品的銲料在高電流密度場合的表現,本研究的實驗試料皆以Sn為基底,主要探討純Sn、Sn基共晶合金(Sn-9Zn、Sn-3.5Ag、Sn-3Ag-0.5Cu、Sn-0.7Cu和Sn-37Pb)以及不同組成二元Sn-xZn ( x = 7, 9, 20, 30, 40, 50, 60, 70, 80, 90, 100 wt.%)系合金之通電誘發組織變化與熔融破壞機制的關係。
    純Sn通電誘發的初始熔融軌的確切位置難以斷定是在晶界處或晶粒內部。基於電流密度和熱兩者分佈不均質的關係,使得純Sn熔融軌跡彼此連結構成更大範圍的網狀熔融路徑,以高角度方式穿越晶界,進一步持續側向擴張形成廣闊分佈的熔融區進而導致熔斷破壞。另一方面,純Sn透過加熱方式誘發熔融現象亦為網狀熔融路徑。
    各Sn基共晶合金通電誘發熔融行為的共通性為熔融區起始於共晶相,再延伸到初晶相(-Sn)進而使彼此熔融區互相連結導致熔斷破壞。然而,共晶相熔解溫度(Teutectic)以及共晶相體積率對於臨界熔斷電流密度(CFCD)的影響程度似乎不如其他因素如每單位共晶相體積熔解所需要的潛熱值(△H+→L)、導電度以及散熱程度(或導熱度)。另外,Sn-9Zn絕大部分電、熱性質優於其他Sn基共晶合金,其中以Sn-37Pb皆為最低。另一方面,初晶富Zn相於通電過程中未發生熔融現象。通電熔斷實驗結果顯示,各Sn基共晶合金之CFCD值依序為Sn-9Zn > Sn-3.5Ag > Sn-0.7Cu > Sn-3Ag-0.5Cu > Sn-37Pb。因此,以Sn-9Zn共晶銲料最有可能應用在高電流密度場合。
    各Sn基共晶合金的熔融特徵並非如同純Sn大範圍的網狀熔融路徑。此外,相較於純Sn,各Sn基共晶合金個別相具有不同的電、熱性質和體積率,使得熔融區的連結形式更具多樣性進而使熔融區較不易連結。因此,大部分的Sn基共晶合金(Sn-37Pb除外)的CFCD值皆高於純Sn。
    進一步調查二元Sn-xZn合金在通電熔融實驗的線性相關統計顯示,CFCD值與導電度、△Hf以及Sn/Zn共晶相體積率皆有良好的相關性。通電過程中,初晶富Zn相並未發生熔融現象,此外主導Sn-xZn合金之通電熔融特性絕大部份取決於Sn/Zn共晶相。當Zn含量從7 wt.% (亞共晶組成)添加到9 wt.% (共晶組成),樹枝狀-Sn初晶相逐漸減少並轉而由富Zn相晶出。由於初晶-Sn亦為熔融相,使得Sn-9Zn合金之CFCD大於Sn-7Zn。當Zn含量從9 wt.%添加到30、70 wt.% (過共晶組成)以及100 wt.% (純Zn),欲使愈高Zn含量試料發生熔斷,仰賴Sn/Zn共晶相熔融區的連結路徑可能因富Zn相不發生熔融而受到阻礙,因此二元Sn-xZn系合金之CFCD是隨Zn含量增加而提升。

    Microminiaturization of electronic products may lead solder joints to fusion failure during the electrification. Additionally, developing current-resistant lead-free solders is imperative for lead-free issues. In order to investigate how solders act in high-current densty occasions, Sn-based test specimens were used for this research, and it mainly investigated the relationship between electrification-induced microstructural change and electrification-fusion mechanism for pure Sn, Sn-based eutectic alloys (Sn-9Zn, Sn-3.5Ag, Sn-0.7Cu, Sn-3Ag-0.5Cu and Sn-37Pb) and Sn-xZn alloys (x = 7, 9, 20, 30, 40, 50, 60, 70, 80, 90, 100 wt.%).
    It is difficult to confirm that whether the electrification-induced initial fusion trace of pure Sn emerges from grain boundary or grain interior. Due to the non-uniform electrical and thermal distribution, fusion traces of pure Sn are interconnected to form larger network-like fusion paths and tend to intersect the grain boundaries in a high-angle manner. Further fusion fracture will happen by sideward spreading of the fusion paths. On the other hand, the heating-induced fusion phenomenon of pure Sn also belongs to network-like fusion paths.
    The commomality of electrification-induced fusion behavior in Sn-based eutectic alloys: The fusion region initially emerges from the eutectic phase, extends to the primary phase (-Sn), and then the mutual fusion regions will further interconnect and cause fusion fracture. However, volume fraction of eutectic phase and eutectic temperature (Teutectic) seems to have less effect on critical fusion current density (CFCD) than the fusion latent heat per unit of eutectic phase volume (△H+→L), electrical conductivity, and heat dissipation (or thermal consuctivity). Additionally, the electrical, thermal properties of Sn-9Zn are mostly better than those of the other Sn-based eutectic alloys, and those of Sn-37Pb are the worst. On the other hand, the fusion phenomenon does not occur on primary Zn-rich phases. The result of electrification-fusion test shows the descending CFCD order of Sn-based eutectic alloys is Sn-9Zn > Sn-3.5Ag > Sn-0.7Cu > Sn-3Ag-0.5Cu > Sn-37Pb. Thus, Sn-9Zn has the potential to be applied in hign-current density occasions.
    A large area of network-like fusion paths in pure Sn can not be observed in the Sn-based eutectic alloys. Besides, the individual phases of Sn-based eutectic alloys have different electrical, thermal properties and volume fractions, making the fusion connecting form more various but the fusion regions have poorer connectivity than pure Sn. Therefore, most of Sn-based eutectic alloys (except for Sn-37Pb) have higher CFCD value than pure Sn.
    The linear regression statistic of electrification-fusion test in Sn-xZn alloys shows CFCD values have good relationship among electrical conductivity, latent heat of eutectic region contained in per unit solder volume (△Hf) and volume fraction of eutectic phase. Fusion phenomenon does not take place in Primary Zn-rich phases during the electrification. Moreover, the dominant influence on electrification-fusion characteristics in Sn-xZn alloys mostly is Sn/Zn eutectic phase. When Zn content increases from 7 wt.% (hypoeutectic) to 9 wt.% (eutectic), dendritic primary -Sn gradually decreases and primary Zn-rich phase crystallizes. Since primary -Sn is also a fusion phase, making Sn-9Zn has higher CFCD than Sn-7Zn. When Zn content increases from 9 wt.% to 30, 70 wt.% (hypereutectic) and 100 wt.% (pure Zn), in order to fuse higher Zn content of Sn-xZn alloys, the fusion-free Zn-rich phase may presumably hinder the connecting path for Sn/Zn eutectic fusion phase from extending further. Thus, the CFCD of Sn-xZn alloys increases with increasing Zn content.

    總目錄 中文摘要....................................................I 英文摘要..................................................III 誌謝.......................................................V 總目錄....................................................VII 表目錄.....................................................XI 圖目錄....................................................XII 符號說明..................................................XVI 第一章 前言................................................1 1-1 研究動機...............................................1 1-2 文獻回顧...............................................2 1-2-1 軟銲(soldering)及傳統Sn-Pb銲料......................2 1-2-2 純Sn特性...........................................3 1-2-3 Sn基無鉛銲料合金之特性...............................3 1-2-3-1 Sn-Zn系銲料..................................4 1-2-3-2 Sn-Ag系銲料..................................4 1-2-3-3 Sn-Cu系銲料..................................5 1-2-3-4 Sn-Ag-Cu系銲料...............................5 1-2-3-5 Sn基共晶組成銲料之特性.........................5 1-2-4 直流電與交流電之通電特性..............................6 1-2-5 通電誘發焦耳熱原理和電流擁擠效應........................6 1-3 研究架構...............................................7 第二章 實驗步驟與方法.......................................15 2-1 實驗材料及通電試片製備...................................15 2-2 微觀組織觀察與電、熱性質量測..............................16 2-3 通電試驗..............................................19 2-3-1 通電試驗機裝置.....................................19 2-3-2 熔斷試驗..........................................19 2-3-3 通電局部熔融試驗與元素分析...........................19 2-3-4 純Sn熔融軌跡行經晶界之路徑分佈統計.....................21 2-3-5 純Sn晶粒徑和熔融軌跡在晶粒間行走距離之計算..............21 2-3-6 純Sn試料加熱誘發熔融實驗...............................21 第三章 純Sn塊材通電誘發熔斷破壞特性............................26 3-1 概述.................................................26 3-2 實驗結果..............................................26 3-2-1 純Sn熔融路徑演進過程................................26 3-2-2 純Sn通電局部熔融特徵全景圖...........................27 3-2-3 純Sn熔融路徑分佈與微觀組織之統計分析...................28 3-2-4 純Sn加熱誘發熔融現象................................28 3-3 討論.................................................29 3-3-1 純Sn通電和加熱方式誘發局部熔融現象探討.................29 3-4 結論.................................................31 第四章 Sn基共晶合金通電誘發熔斷破壞特性........................37 4-1 概述.................................................37 4-2 實驗結果..............................................37 4-2-1 各Sn基共晶合金微觀組織..............................37 4-2-2 各Sn基共晶合金熱性質................................38 4-2-3 各Sn基共晶合金電性質................................39 4-2-4 各Sn基共晶合金通電局部熔融現象........................39 4-2-4-1 Sn-9Zn合金通電局部熔融現象....................40 4-2-4-2 Sn-3.5Ag合金通電局部熔融現象..................40 4-2-4-3 Sn-0.7Cu合金通電局部熔融現象..................41 4-2-4-4 Sn-3Ag-0.5Cu合金通電局部熔融現象..............41 4-2-4-5 Sn-37Pb合金通電局部熔融現象...................42 4-3 討論.................................................42 4-3-1 本研究Sn基共晶合金電流負荷耐受度(CFCD)的影響因素........42 4-3-2 各Sn基共晶合金通電局部熔融之組織特徵變化與電流負荷耐受度 的關係............................................44 4-3-2-1 各Sn基共晶合金通電局部熔融之組織特徵變化..........44 4-3-2-2 各Sn共晶合金通電局部熔融全景圖和電流負荷耐受度 的關係......................................46 4-3-3 各Sn基共晶合金與純Sn之熔融破壞行為差異.................47 4-4 結論.................................................48 第五章 Sn-xZn合金通電誘發熔斷破壞特性.........................73 5-1 概述.................................................73 5-2 實驗結果..............................................73 5-2-1 Sn-xZn系合金微觀組織...............................73 5-2-2 Sn-xZn系合金熱性質.................................74 5-2-3 Sn-xZn系合金電性質.................................74 5-2-4 Sn-xZn系合金通電局部熔融現象.........................75 5-2-4-1 低Zn含量之Sn-xZn合金(x = 7, 9 wt.%)通電局部 熔融現象..................................….75 5-2-4-2 高Zn含量之Sn-xZn合金(x = 30, 70 wt.%)以及純Zn 通電局部熔融現象..............................76 5-3 討論.................................................78 5-3-1 本研究二元Sn-xZn系合金電流負荷耐受度(CFCD)的影響因素....78 5-3-2 二元Sn-xZn系合金通電熔融破壞機制.....................79 5-3-2-1 低Zn含量Sn-xZn合金(x = 7, 9 wt.%)通電局部熔融 之組織特徵變化...............................79 5-3-2-2 高Zn含量Sn-xZn合金(x = 30, 70 wt.%)以及純Zn 通電局部熔融之組織特徵變.......................81 5-4 結論.................................................82 第六章 總結論.............................................102 參考文獻…………………………………………………………...………104 表目錄 表2-1 本研究Sn基共晶試料合金之化學組成 (wt.%)..................22 表2-2 本研究Sn-xZn系試料合金之化學組成 (wt.%).................22 表2-3 本研究純Sn (99.9 wt.%)試料之澆鑄條件...................23 表2-4 本研究Sn基共晶試料之澆鑄條件............................23 表2-5 本研究Sn-xZn系試料之澆鑄條件...........................23 表3-1 純Sn歷經95% CFCD之通電誘發熔融軌跡行經晶界之路徑分佈統計表 (總樣本數:1328).....................................32 表4-1 本研究Sn基共晶合金之密度值.............................50 表4-2 本研究Sn基共晶合金之每單位共晶相體積熔解所需要的潛熱值 (△H+→L..........................................50 表4-3 Sn基共晶合金之導熱度(常溫) [65-68].....................51 表5-1 本研究二元Sn-xZn系銲料合金之密度值......................84 表5-2 本研究Sn-xZn系合金之每單位體積銲料所含共晶相完全熔解所需要的 潛熱值(△Hf)........................................85 表5-3 Sn-xZn銲料合金個別相歷經通電局部熔融前後之EDS原子百分比 (at.%)變化分析.......................................86 圖目錄 圖1-1 Sn-Pb二元合金相圖 [23]...............................9 圖1-2 Sn-Zn二元合金相圖 [28]..............................10 圖1-3 Sn-Ag二元合金相圖 [30]..............................11 圖1-4 Sn-Cu二元合金相圖 [41]..............................12 圖1-5 Sn-Ag-Cu三元合金相圖(溫度:℃) [47]...................13 圖1-6 純Sn和Sn基合金通電破壞特性研究之實驗架構流程.............14 圖2-1 通電試片製備用之石墨模尺寸 (單位:mm)...................24 圖2-2 通電試驗之示意圖:(a) 通電試驗試片尺寸 (兩種厚度尺寸 於2-1節說明);(b) 交流電通電裝置 (a*為輕度熔融區域; b*為中度熔融區域;c*為嚴重熔融區域)....................25 圖3-1 純Sn熔融路徑演進(OM):(a) 鑄造組織(平均晶粒徑: 28.8 m);(b-c) 78% CFCD (1105 A/cm2); (d) 95% CFCD (1329 A/cm2);(e) 98% CFCD (1329 A/cm2)之相同位置觀測...........................33 圖3-2 純Sn試片平行部觀察區歷經98% CFCD之熔融特徵全景(OM).......34 圖3-3 純Sn歷經95% CFCD之熔融路徑穿越鑄造晶界之角度直方圖 (樣本數:1035)......................................35 圖3-4 純Sn之加熱誘發熔融現象:(a)未加熱;(b)圖(a)之加熱 10秒(近試料中心);(c)加熱10秒(近試料邊緣)..............36 圖4-1 Sn基共晶合金之OM微觀組織:(a) Sn-9Zn;(b) Sn-3.5Ag; (c) Sn-0.7Cu;(d) Sn-3Ag-0.5Cu;(e)Sn-37Pb.........52 圖4-2 Sn-3Ag-0.5Cu合金微觀組織EPMA之元素分佈................53 圖4-3 各Sn基共晶合金之共晶相體積率...........................54 圖4-4 各Sn基共晶合金之DSC曲線圖:(a) Sn-37Pb;(b) Sn-9Zn; (c) Sn-3.5Ag;(d) Sn-0.7Cu;(e) Sn-3Ag-0.5Cu.......55 圖4-5 各Sn基共晶合金之電性質量測:(a) 導電度(常溫);(b) 臨界 熔斷電流密度........................................56 圖4-6 Sn-9Zn合金歷經86% CFCD (1449 A/cm2)之通電誘發局部 熔融特徵(OM):(a) 鑄態組織,(b) 圖(a)之輕微熔融; (c) 鑄態組織,(d) 圖(c)之中度熔融;(e) 鑄態組織, (f) 圖(e)之嚴重熔融;(g) 局部熔融全景圖.................57 圖4-7 Sn-3.5Ag合金歷經88% CFCD (1437 A/cm2)之通電誘發局部 熔融特徵(OM): (a) 鑄態組織,(b) 圖(a)之輕微熔融;(c) 鑄態組織,(d) 圖(c)之中度熔融;(e) 鑄態組織,(f) 圖(e) 之嚴重熔融;(g) 局部熔融全景圖........................59 圖4-8 Sn-0.7Cu合金歷經93% CFCD (1482 A/cm2)之通電誘發局部 熔融特徵(OM): (a) 鑄態組織,(b) 圖(a)之輕微熔融;(c) 鑄態組織,(d) 圖(c)之中度熔融;(e) 鑄態組織,(f) 圖(e) 之嚴重熔融;(g) 局部熔融全景圖........................61 圖4-9 Sn-3Ag-0.5Cu合金歷經94% CFCD (1499 A/cm2)之通電誘發 局部熔融(OM):(a) 鑄態組織,(b) 圖(a)之輕微熔融;(c) 鑄態組織,(d) 圖(c)之中度熔融;(e) 鑄態組織,(f) 圖(e) 之嚴重熔融;(g) 局部熔融全景圖........................63 圖4-10 Sn-37Pb合金歷經87% CFCD (1145 A/cm2)之通電誘發局部 熔融特徵(OM):(a) 鑄態組織,(b) 圖(a)之輕微熔融;(c) 鑄態組織,(d) 圖(c)之中度熔融;(e) 鑄態組織,(f) 圖(e) 之嚴重熔融;(g) 局部熔融全景圖........................65 圖4-11 各Sn基共晶合金電流負荷耐受度和共晶相體積率之相關性.........67 圖4-12 各Sn基共晶合金電流負荷耐受度和共晶相熔解溫度(Teutectic) 之相關性...........................................68 圖4-13 各Sn基共晶合金電流負荷耐受度和導電度之相關性..............69 圖4-14 各Sn基共晶合金電流負荷耐受度和導熱度(或散熱程度)之相關性 [65-68]............................................70 圖4-15 各Sn基共晶合金初期熔融電流密度(ESFCD)和單位共晶相體積熔解 潛熱值(H+→L)之相關性.............................71 圖4-16 各Sn基共晶合金電流負荷耐受度(CFCD)和每單位共晶相體積發生 熔融的潛熱值(△H+→L)之相關性........................72 圖5-1 Sn-xZn合金之OM微觀組織:(a) Sn-7Zn;(b) Sn-9Zn; (c) Sn-30Zn;(d) Sn-70Zn;(e) Sn-100Zn.............87 圖5-2 Sn-xZn合金之共晶相體積率.............................88 圖5-3 Sn-xZn合金之DSC曲線圖:(a) Sn-7Zn;(b) Sn-9Zn; (c) Sn-30Zn;(d) Sn-70Zn;(e)熔解潛熱值與Zn含量之關係..89 圖5-4 Zn含量對Sn-xZn合金電性質的影響:(a) 導電度變化;(b) 臨界 熔斷電流密度變化....................................90 圖5-5 Sn-7Zn合金歷經90% CFCD (1457 A/cm2)之通電誘發局部 熔融特徵(OM):(a) 鑄態組織,(b) 圖(a)之輕微熔融; (c) 鑄態組織,(d) 圖(c)之中度熔融;(e) 鑄態組織, (f) 圖(e)之嚴重熔融;(g) 局部熔融全景圖................91 圖5-6 Sn-7Zn合金歷經90% CFCD (1457 A/cm2)之通電誘發局部 熔融特徵(SEM):(a) 取自圖5-5(f)之虛線長方形框示區域; (b) 圖(a)之虛線長方形框示區域特寫......................93 圖5-7 Sn-7Zn合金組織熔融相EPMA之元素分佈....................94 圖5-8 Sn-30Zn合金歷經75% CFCD (1499 A/cm2)之通電誘發局部 熔融特徵(OM):(a) 輕微熔融區;(b) 鑄態組織;(c) 圖(b) 之嚴重熔融.........................................95 圖5-9 Sn-70Zn合金歷88% CFCD (2197 A/cm2)之通電誘發局部 熔融特徵(OM):(a) Sn-70Zn鑄態組織;(b) 圖(a)之輕微熔融.96 圖5-10 純Zn局部通電之熔融現象演進(OM):(a) 鑄造組織; (b) 77% CFCD (2289 A/cm2);(c) 84% CFCD (2499 A/cm2)之相同位置觀測...........................97 圖5-11 Sn-xZn系合金電流負荷耐受度(CFCD)和導電度之相關性.........98 圖5-12 Sn-xZn系合金電流負荷耐受度和共晶相熔解潛熱值(Hf)之相關性..99 圖5-13 Sn-xZn系合金電流負荷耐受度和共晶相體積率之相關性.........100 圖5-14 Sn-xZn系合金電流負荷耐受度和導熱度(或散熱程度)之相關性 [66]..............................................101

    [1] M. Kimura, S. Inoue, T. Shimoda, T. Sameshima, Current
    paths over grain boundaries in polycrystalline silicon
    films, J. Appl. Phys., 40 (2001), pp. 97-99.
    [2] I.A. Blech, E.S. Meieran, Electromigration in thin
    aluminum films, J. Appl. Phys., 40 (1968), pp. 485-
    491.
    [3] Y.M. Hung, C.M. Chen, Electromigration of Sn-9wt.% Zn
    solder, J. Electro. Mater., 37 (2008), pp. 887-893.
    [4] S.M. Kuo, K.L. Lin, Microstructure evolution during
    electromigration between Sn-9Zn solder and Cu, J.
    Mater. Res., 22 (2007), pp. 1240-1249.
    [5] Y.C. Hsu, C.K. Chou, P.C. Liu, C. Chen,
    Electromigration in Pb-free SnAg3.8Cu0.7 solder
    stripes, J. Appl. Phys., 98 (2005), pp. 0335231-
    0335236.
    [6] Y.C. Hu, Y.H. Lin, C.R. Kao, Electomigration failure
    in flip chip solder joints due to rapid dissolution of
    copper, J. Mater. Res., 18 (2003), pp. 2544-2548.
    [7] C.M. Tsai, Y.L. Lin, J.Y. Tsai, Y.S. Lai, C.R. Kao,
    Local melting induced by electromigration in flip-chip
    solder joints, J. Electro. Mater., 35 (2006), pp.
    1005-1009.
    [8] Y.L. Lin, C.W. Chang, C.M. Tsai, C.W. Lee, C.R. Kao,
    Electromigration-induced UBM consumption and the
    resulting failure mechanisms in flip-chip solder
    joints, J. Electro. Mater., 35 (2006), pp. 1010-1016.
    [9] Y.H. Lin, Y.C. Hu, C.M. Tsai, C.R. Kao, K.N. Tu, In
    situ observation of the void formatin-and-propagation
    mechanism in solder joints under current-stressing,
    Acta Mater., 53 (2005), pp. 2029-2035.
    [10] H. Ye, C. Basaran, D.C. Hopkins, Damage mechanics of
    microelectronics solder joints under high current
    densities, Int. J. Solids Struct., 40 (2003), pp. 4021-
    4032.
    [11] E.C.C. Yeh, W.J. Choi, K.N. Tu, Current-crowding-
    induced electromigration failure in flip chip solder
    joints, Appl. Phys. Lett., 80 (2002), pp. 580-582.
    [12] J.D. Wu, P.J. Zheng, C.W. Lee, S.C. Hung, J.J. Lee, A
    study in flip-chip UBM/bump reliability with effects of
    SnPb solder composition, Microelectron. Relia., 46
    (2006), pp. 41-52.
    [13] F.Y. Hung, C.J. Wang, T.S. Lui, L.H. Chen, Electrical
    current phase transformation of Sn-9Zn-1Ag alloy,
    Mater. Trans., 46 (2005), pp. 1820-1824.
    [14] W.H. Wu, S.P. Peng, C.S. Lin, C.E. Ho, Study of DC and
    AC electromigration behavior in eutectic Pb-Sn solder
    joints, J. Electro. Mater., 38 (2009), pp. 2184-2193.
    [15] A.W. Worcester, J.T. O’Reilly, Metals handbook, 10th
    ed., ASM, 2 (1990), pp. 543-556.
    [16] S. Jin, Developing lead-free solders: a challenge and
    opportunity, JOM, 45 (1993), pp. 13-19.
    [17] S.S. Kang, A.K. Sarkhel, Lead-free solders for
    electronic packaging, J. Electro. Mater., 23 (1994),
    pp. 701-707.
    [18] M. McCormack, S. Jin, H.S. Chen, D.A. Machusak, New
    lead-free Sn-Zn-In solder alloys, J. Elctro. Mater., 23
    (1994), pp. 687-690.
    [19] J. Glarzer, Microstructure and mechanical properties of
    lead-free solder alloys for low-cost electronic
    assembly: a review, J. Electro. Mater., 23 (1994), pp.
    693-700.
    [20] T.L. Gall, Metals handbook, desk ed., ASM, Chap. 30
    (1985), pp. 73-76.
    [21] P.T. Vianco, D.R. Frear, Issues in the replacement of
    lead-bearing, JOM, 45 (1993), pp. 14-19.
    [22] S. Vaynman, M.E. Fine, Development of fluxes for lead-
    free solders containing zinc, Scripta Mater., 41
    (1999), pp. 1269-1271.
    [23] 張淑如,『鉛對人體的危害』,勞工安全衛生簡訊,第12期,(民國
    84年),17-18頁。
    [24] K.N. Tu, A.M. Gusak, M. Li, Physics and materials
    challenges for lead-free solders, J. Appl. Phys., 93
    (2003), pp. 1335-1353.
    [25] S. Choi, J.G. Lee, F. Guo, T.R. Bieler, K.N.
    Subramanian, J.P. Lucas, Creep properties of Sn-Ag
    solder joints containing intermetallic particles, JOM.,
    53 (2001), pp. 22-26.
    [26] N.-C. Lee, Getting ready for lead-free solders,
    Soldering and Surface Mount Tech., 26 (1997), pp. 65-
    69.
    [27] 陳信文,『無鉛銲料簡介』,電子與材料,第1期,(民國88年),
    74-77頁。
    [28] Z. Moser, J. Dutkiewicz, W. Gasior, J.Salawa, The Sn-
    Zn system, Bull. Alloy Phase Diagrams, 6 (1985), pp.
    330-334.
    [29] E.P. Wood, K.L. Nimmo, In search of new lead-free
    electronic solders, 23 (1994), pp. 709-713.
    [30] I. Karakaya, W.T. Thompson, The Ag-Sn system, Bull.
    Alloy Phase Diagrams, 8 (1987), pp. 340-347.
    [31] K. Suganuma, Y. Nakamura, Microstructure and strength
    of interface between Sn-Ag eutectic solder and Cu, J.
    Japan Inst. Metals (in Japanese), 59 (1995), pp. 1299-
    1305.
    [32] K. Suganuma, S.H. Huh, K. Kim, H. Nakase, Y. Nakamura,
    Effect of Ag content on properties of Sn-Ag binary
    alloy solder, Mater. Trans., 42 (2001), pp. 286-291.
    [33] W. Yang, R.W. Messler, L.E. Felton, Microstructure
    evolution of eutectic Sn-Ag solder joints, J. Electro.
    Mater., 23 (1994), pp. 765-772.
    [34] V.I. Igoshev, J.I. Kleiman, D. Shangguan, S. Wong, U.
    Michon, Fracture of Sn-3.5%Ag solder alloy under creep,
    J. Electro. Mater., 29 (2000), pp. 1356-1361.
    [35] W. Yang, L.E. Feltion, R.W. Messler, The effect of
    soldering process variables on the microstructure and
    mechanical properties of eutectic Sn-Ag/Cu solder
    joints, J. Electro. Mater., 24 (1995), pp. 1465-1472.
    [36] J.S. Hwang, R.M. Vargas, Solder joint reliability-can
    solder creep, Soldering and Surface Mount Tech., 2
    (1990), pp. 38-45.
    [37] F. Hua, J. Glazer, Lead-free for electronic assembly,
    Design and Reliability of Solders and Solder
    Interconnections, TMS Annual Meeting, (1997), pp. 65-
    73.
    [38] J. Glazer, Metallurgy of low temperature lead-free
    solders forelectronic assembly, International Mater.
    Rev., 40 (1995), pp. 65-93.
    [39] K.J. Puttlitz, G.T. Galyon, Impact of the rohs
    directive on high-performance electronic systems, J.
    Mater. Sci., 18 (2007), pp. 347-365.
    [40] Y. Kariya, M. Otsuka, Mechanial fatigue
    characteristics of Sn-3.5Ag-X (X=Bi, Cu, Zn and In)
    solder alloys, J. Electro. Mater., 27 (1998), pp. 1229-
    1235.
    [41] N. Saunders, A.P. Miodownik, The Cu-Sn system, Bull.
    Alloy Phase Diagrams, 11 (1990), pp. 278-287.
    [42] L. Xiao, J. Liu, L. Ye, A. Tholen, Characterization of
    mechanical properties of bulk lead free solders,
    International Symposium on Advanced Packaging
    Materials, (2000), pp. 145-151.
    [43] J.W. Yoon, S.W. Kim, S.B. Jung, Effect of reflow time
    on interfacial reaction and shear strength of Sn-0.7Cu
    solder/Cu and electroless Ni-PBGA joints, J. Alloys
    Comp., 385 (2004), pp. 192-198.
    [44] J.W. Yoon, S.W. Kim, S.B. Jung, Effects and reflow and
    cooling conditions on interfacial reaction and IMC
    morphology of Sn-Cu/Ni solder joint, J. Alloys Comp.,
    415 (2006), pp. 56-61.
    [45] K. Suganuma, Advances in lead-free electronics
    soldering, Current Opinion in Sold State and Materials
    Science, 5 (2001), pp. 55-64.
    [46] 李芳儀,『銅含量對Sn-Ag-Cu無鉛銲錫振動破壞特性之效應』,國立成功
    大學材料科學及工程學系,碩士論文,(民國92年)。
    [47] Ed.T. Lyman, H.E. Bouer, W.J. Carnes, Metals handbook
    Vol. 8 metallography, structures and phase diagrams,
    ASM, Metals Park, Ohio, USA, pp. 256.
    [48] K.S. Kim, S.H. Huh, K. Suganuma, Effects of
    intermetallic compounds on properties of Sn-Ag-Cu lead-
    free soldered joints, J. Alloy Compd., 352 (2003), pp.
    226-236.
    [49] K.S. Kim, S.H. Huh, K. Suganuma, Effects of cooling
    speed on microstructure and tensile properties of Sn-
    Ag-Cu alloys, Mater. Sci. Eng., A 333 (2002), pp. 106-
    114.
    [50] S.L. Allen, M.R. Notis, R.R. Chromik, R.P. Vinci,
    Microstructural evolution in lead-free solder alloys:
    part II. directionally solidified Sn-Ag-Cu, Sn-Cu and
    Sn-Ag, J. Mater. Res., 19 (2004), pp. 1425-1431.
    [51] X. Deng, N. Chawla, K.K. Chawla, M. Koopman,Deformation
    behavior of (Cu, Ag)-Sn intermetallics by
    nanoindetation, Acta Mater., 52 (2004), pp. 4291-4303.
    [52] S.L. Allen, M.R. Notis, R.R. Chromik, R.P. Vinci,
    Microstructural evolution in lead-free solder alloys:
    part I. Cast Sn-Ag-Cu eutectic, J. Mater. Res., 19
    (2004), pp. 1417-1424.
    [53] B.Y. Wu, Y.C. Chan, H.W. Zhong, M.O. Alam, Effect of
    current stressing on the reliability of 63Sn37Pb solder
    joints, J. Mater. Sci., 42 (2007), pp. 7415-7422.
    [54] J.W. Nah, J.O. Suh and K.N. Tu, Effect of current
    crowding and joule heating on electromigration-induced
    failure in flip chip composite solder joints tested at
    room temperature, J. Appl. Phys. 98 (2005), pp.
    0137151-0137156.
    [55] J.S. Zhang, Y.C. Chan, Y.P. Wu, H.J. Xi, F.S. Wu,
    Electromigration of Pb-free solder under a low level of
    current density, J. Alloys Compd., 458 (2008), pp. 492-
    499.
    [56] B.Y. Wu, Y.C. Chan, Electric current effect on
    microstructure of ball grid array solder joint, J.
    Alloys Compd., 392 (2005), pp. 237-246.
    [57] Y.C. Chan, D. Yang, Failure mechanism of solder
    interconnects under current stressing in advanced
    electronic packages, Prog. Mater Sci., 55 (2010), pp.
    428-475.
    [58] H. Ye, C. Basaran, D.C. Hopkins, Mechanical degradation
    of microelectronics solder joints under current
    densities, Int. J. Solids Struct., 40 (2003), pp. 7269-
    7284.
    [59] H. Ye, C. Basaran, D.C. Hopkin, Pb phase coarsening in
    eutectic Pb/Sn flip chip solder joints under electric
    current stressing, Int. J. Solids Struct., 41 (2004),
    pp. 2743-2755.
    [60] M.O. Alam, C. Bailey, B.Y. Wu, D. Yang, Y.C. Chan, High
    current density induced damage mechanisms in electronic
    solder joints: a state-of-the-art review, International
    Symposium on High Density Packaging and Microsystem
    Integration, Shanghai, China, (2007), pp.1-7.
    [61] C.H. Wang, S.W. Chen, Electric current effects in flip
    chip solder joints, J. Chin. Inst. Chem. Engrs., 37
    (2006), pp. 185-191.
    [62] 蔡東原,『共晶型錫基合金之高荷電破壞特性探討』,國立成功大學材料
    科學及工程學系,碩士論文,(民國93年)。
    [63] A.T. Wu, A.M. Gusak, Electromigration-induced grain
    rotation in anisotropic conducting beta tin, Appl.
    Phys. Lett., 86 (2005), pp. 2419021-2419023.
    [64] A.U. Telang, T.R. Bieler, J.P. Lucas, K.N. Subramanian,
    L.P. Lehman, Y. Xing, E.J. Cotts, Grain-boundary
    character and grain growth in bulk tin and bulk lead-
    free solder alloys, J. Electro. Mater., 33 (2004), pp.
    1412-1423.
    [65] K. Matsugi, G. Sasaki, O. Yanagisawa, Y. Jumagai, K.
    Fujii, Electrical and thermal characteristics of Pb-
    free Sn-Zn alloys for an AC-low voltage fuse element,
    Mater. Trans., 48 (2007), pp. 1105-1112.
    [66] J.A. King, Material handbook for hybrid
    microelectronics, Artec House , Norwood, USA, (1988).
    [67] J. Bilek, J. Atkinson, W. Wakeham, Thermal conductivity
    of molten lead free solders, European Microelectronics
    and packaging Symposium, (2004).
    [68] N. Hidaka, H. Watanabe, M. Yoshiba, M. Shimoda, T.
    Asai, M. Ono, Creep behavior and microstructure of Sn-
    Ag-Cu-Ni-Ge lead-free solder alloy, Mater. Sci. Tech.,
    (2006), pp. 185-197.
    [69] R. B. Ross, Metallic materials specification handbook,
    3rd ed., E. & F. N. Spon., (1980), pp. 589-619.

    下載圖示 校內:2018-08-19公開
    校外:2018-08-19公開
    QR CODE