簡易檢索 / 詳目顯示

研究生: 陳韋廷
Chen, Wei-Ting
論文名稱: 用於光降解與生物應用的人工纖毛裝置
Investigation of artificial cilia for photodegradation and biological applications.
指導教授: 陳嘉元
Chen, Chia-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 56
中文關鍵詞: 微流體人工纖毛光降解微反應器微粒子影像測速
外文關鍵詞: microfluidic, artificial cilia, sperm activation, photodegradation, µPIV
相關次數: 點閱:65下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著時代的發展,人類的生存在各方面皆遇到不同的挑戰,為了在該領域尋求解決方法,勢必要開發相關的研究設備。為了減少在各式的材料中挑選出最佳的光觸媒材料所需的時間,本文提出了一種基於人工纖毛的微流控裝置,以提升光降解過程的效率。本研究提出了一種磁驅動的人工纖毛微流體裝置作為測試新型光催化材料的平台,此裝置以葉脈作為仿生設計的對象設計出腔室為八邊形的微反應器,並搭載以鐘形蟲口腔纖毛做為參考對象所設計出的環狀纖毛分布,以提供流場的均勻性與穩定性,並有效的進行微混合,透過SnFe2O4奈米顆粒和磁性人工纖毛結合使用,可以藉由更好的混合性能在可見光下獲得高效的光催化效果。經由一系列的測試,當人工纖毛呈圓形分布時,會產生“二次流”。再增強與增廣渦流的強度與分布進一步提高混合效率和光催化活性,光降解25分鐘時降解能力達到71.2%,大幅提升光降解微反應器的效能,同時亦大幅降低所需的時間成本。

    This thesis presents a microfluidic device embedded with artificial cilia structure to facilitate photodegradation process. The microfluidic device bio-mimic the leaf veins as well as vorticella mouth towards its design. SnFe2O4 nanoparticles were tested to achieve the photodegradation capability to photodegrade the RhB pollutants under the visible light of wavelength 580 nm. It was realized that, when the artificial cilia are distributed in a circular array bio mimicking the vorticella mouth, a stronger vortex could be generated to achieve better photocatalytic performance and shorten the reaction time.

    摘要 I 致謝 VI 目錄 VII 表目錄 X 圖目錄 XI 第1章、 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.2.1 自然界中的纖毛 3 1.2.2 纖毛推進原理 4 1.2.3 人工纖毛的應用 6 1.2.3.1 磁驅動人工纖毛 7 1.2.3.2 電驅動人工纖毛 9 1.3 磁性人工纖毛與微流體裝置 11 1.3.1 微流道 11 1.3.2 微型泵浦 13 1.3.3 微型混合器 14 1.4 光催化水淨化之微反應器應用 16 1.4.1 微毛細管反應器 16 1.4.2 單一微流道反應器 17 1.4.3 多微流道反應器 18 第2章、 研究方法 20 2.1 微流體裝置與人工纖毛製程 20 2.2 磁場控制系統 23 2.2.1 LabVIEW人機介面操作 23 2.3 微粒子影像測速儀 (µPIV) 24 2.3.1 微粒子影像測速儀實驗設備 25 2.3.2 流場量化 27 2.4 光觸媒 28 2.4.1 X-射線繞射 (XRD) 分析 29 2.4.2 傅立葉紅外光譜 (FTIR) 分析 30 2.4.3 能量分散式光譜儀 31 第3章、 藉由微流體裝置進行光降解效率測試 32 3.1 研究背景與動機 32 3.2 微流道彷生結構設計 34 3.3 實驗設置 38 3.3.1 磁場驅動系統 40 3.3.1.1 Arduino 控制系統 40 3.3.1.2 磁場驅動電路 41 3.3.1.3 電磁鐵平台 41 3.3.2 紫外/可見分光光譜儀(UV – visible spectrometer) 43 3.4 結果與討論 44 3.4.1 人工纖毛的有效性測試 44 3.4.2 人工纖毛分布對於光降解效能的影響 46 3.4.3 流場可視化-層/紊流分析 48 3.4.4 流場可視化-渦流分析 49 第4章、 結論與未來展望 51 4.1 總結 51 4.2 未來展望 52 參考文獻 53

    [1] J. L. Wang and L. J. Xu, "Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application," Critical reviews in environmental science and technology, vol. 42, no. 3, pp. 251-325, 2012.
    [2] A. Fujishima, T. N. Rao, and D. A. Tryk, "Titanium dioxide photocatalysis," Journal of photochemistry and photobiology C: Photochemistry reviews, vol. 1, no. 1, pp. 1-21, 2000.
    [3] C. Lee, J. Yoon, and U. Von Gunten, "Oxidative degradation of N-nitrosodimethylamine by conventional ozonation and the advanced oxidation process ozone/hydrogen peroxide," Water Research, vol. 41, no. 3, pp. 581-590, 2007.
    [4] S. Kolaczkowski, P. Plucinski, F. Beltran, F. Rivas, and D. McLurgh, "Wet air oxidation: a review of process technologies and aspects in reactor design," Chemical Engineering Journal, vol. 73, no. 2, pp. 143-160, 1999.
    [5] T. Iwasita, "Electrocatalysis of methanol oxidation," Electrochimica Acta, vol. 47, no. 22-23, pp. 3663-3674, 2002.
    [6] E. Brillas, I. Sirés, and M. A. Oturan, "Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry," Chemical reviews, vol. 109, no. 12, pp. 6570-6631, 2009.
    [7] Y. Yang, P. Wang, S. Shi, and Y. Liu, "Microwave enhanced Fenton-like process for the treatment of high concentration pharmaceutical wastewater," Journal of Hazardous Materials, vol. 168, no. 1, pp. 238-245, 2009.
    [8] S. L. Postel, G. C. Daily, and P. R. Ehrlich, "Human appropriation of renewable fresh water," Science, vol. 271, no. 5250, pp. 785-788, 1996.
    [9] W. H. Organization, "Sixty-Fourth World Health Assembly: Daily Notes on Proceedings," ed: May, 2011.
    [10] A. Stechmann and T. Cavalier-Smith, "Rooting the eukaryote tree by using a derived gene fusion," Science, vol. 297, no. 5578, pp. 89-91, 2002.
    [11] F. Boselli, J. G. Goetz, G. Charvin, and J. Vermot, "A quantitative approach to study endothelial cilia bending stiffness during blood flow mechanodetection in vivo," in Methods in cell biology, vol. 127: Elsevier, 2015, pp. 161-173.
    [12] H. Lodish, A. Berk, L. Zipursky, P. Matsudaira, D. Baltimore, and J. Darnell, "Cilia and flagella: structure and movement," Molecular Cell Biology, 2000.
    [13] D. N. WHEATLEY, A. M. WANG, and G. E. STRUGNELL, "Expression of primary cilia in mammalian cells," Cell biology international, vol. 20, no. 1, pp. 73-81, 1996.
    [14] J. C. Ho et al., "The effect of aging on nasal mucociliary clearance, beat frequency, and ultrastructure of respiratory cilia," American journal of respiratory and critical care medicine, vol. 163, no. 4, pp. 983-988, 2001.
    [15] R. Rikmenspoel and W. G. Rudd, "The contractile mechanism in cilia," Biophysical journal, vol. 13, no. 9, pp. 955-993, 1973.
    [16] D. Smith, J. Blake, and E. Gaffney, "Fluid mechanics of nodal flow due to embryonic primary cilia," Journal of The Royal Society Interface, vol. 5, no. 22, pp. 567-573, 2008.
    [17] M. Downton and H. Stark, "Beating kinematics of magnetically actuated cilia," EPL (Europhysics Letters), vol. 85, no. 4, p. 44002, 2009.
    [18] Y.-A. Wu, B. Panigrahi, Y.-H. Lu, and C.-Y. Chen, "An integrated artificial cilia based microfluidic device for micropumping and micromixing applications," Micromachines, vol. 8, no. 9, p. 260, 2017.
    [19] B. Evans, A. Shields, R. L. Carroll, S. Washburn, M. Falvo, and R. Superfine, "Magnetically actuated nanorod arrays as biomimetic cilia," Nano letters, vol. 7, no. 5, pp. 1428-1434, 2007.
    [20] A. Shields, B. Fiser, B. Evans, M. Falvo, S. Washburn, and R. Superfine, "Biomimetic cilia arrays generate simultaneous pumping and mixing regimes," Proceedings of the National Academy of Sciences, vol. 107, no. 36, pp. 15670-15675, 2010.
    [21] J. den Toonder et al., "Artificial cilia for active micro-fluidic mixing," Lab on a Chip, vol. 8, no. 4, pp. 533-541, 2008.
    [22] C. L. Van Oosten, C. W. Bastiaansen, and D. J. Broer, "Printed artificial cilia from liquid-crystal network actuators modularly driven by light," Nature materials, vol. 8, no. 8, pp. 677-682, 2009.
    [23] J. Belardi, N. Schorr, O. Prucker, and J. Rühe, "Artificial cilia: generation of magnetic actuators in microfluidic systems," Advanced Functional Materials, vol. 21, no. 17, pp. 3314-3320, 2011.
    [24] M. Vilfan et al., "Self-assembled artificial cilia," Proceedings of the national academy of sciences, vol. 107, no. 5, pp. 1844-1847, 2010.
    [25] J. Hussong, N. Schorr, J. Belardi, O. Prucker, J. Rühe, and J. Westerweel, "Experimental investigation of the flow induced by artificial cilia," Lab on a Chip, vol. 11, no. 12, pp. 2017-2022, 2011.
    [26] S. Zhang, Y. Wang, R. Lavrijsen, P. R. Onck, and J. M. den Toonder, "Versatile microfluidic flow generated by moulded magnetic artificial cilia," Sensors and Actuators B: Chemical, vol. 263, pp. 614-624, 2018.
    [27] K. Oh, B. Smith, S. Devasia, J. J. Riley, and J.-H. Chung, "Characterization of mixing performance for bio-mimetic silicone cilia," Microfluidics and nanofluidics, vol. 9, no. 4-5, pp. 645-655, 2010.
    [28] X. Li et al., "Modified micro-space using self-organized nanoparticles for reduction of methylene blue," Chemical communications, no. 8, pp. 964-965, 2003.
    [29] Z. Zhang, H. Wu, Y. Yuan, Y. Fang, and L. Jin, "Development of a novel capillary array photocatalytic reactor and application for degradation of azo dye," Chemical Engineering Journal, vol. 184, pp. 9-15, 2012.
    [30] Y. Matsushita, N. Ohba, S. Kumada, K. Sakeda, T. Suzuki, and T. Ichimura, "Photocatalytic reactions in microreactors," Chemical Engineering Journal, vol. 135, pp. S303-S308, 2008.
    [31] R. Gorges, S. Meyer, and G. Kreisel, "Photocatalysis in microreactors," Journal of Photochemistry and Photobiology A: Chemistry, vol. 167, no. 2-3, pp. 95-99, 2004.
    [32] W. Wang, Z. Yao, J. C. Chen, and J. Fang, "Composite elastic magnet films with hard magnetic feature," Journal of Micromechanics and microengineering, vol. 14, no. 10, p. 1321, 2004.
    [33] B. Panigrahi and C.-Y. Chen, "Enhanced Visible-Responsive Photodegradation Through SnFe 2 O 4 Nanoparticles with Modified Magnetic Artificial Cilia Actuation," in 2019 IEEE 14th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), 2019: IEEE, pp. 93-96.
    [34] K.-T. Lee and S.-Y. Lu, "A cost-effective, stable, magnetically recyclable photocatalyst of ultra-high organic pollutant degradation efficiency: SnFe 2 O 4 nanocrystals from a carrier solvent assisted interfacial reaction process," Journal of Materials Chemistry A, vol. 3, no. 23, pp. 12259-12267, 2015.
    [35] A. de Mello and R. Wootton, "FOCUS But what is it good for? Applications of microreactor technology for the fine chemical industry," Lab on a Chip, vol. 2, no. 1, pp. 7N-13N, 2002.
    [36] K. F. Jensen, "Microreaction engineering—is small better?," Chemical Engineering Science, vol. 56, no. 2, pp. 293-303, 2001.
    [37] V. Hessel and H. Löwe, "Microchemical engineering: components, plant concepts user acceptance–Part I," Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology, vol. 26, no. 1, pp. 13-24, 2003.
    [38] H. Lu, M. A. Schmidt, and K. F. Jensen, "Photochemical reactions and on-line UV detection in microfabricated reactors," Lab on a Chip, vol. 1, no. 1, pp. 22-28, 2001.
    [39] R. W. Matthews, "Photooxidative degradation of coloured organics in water using supported catalysts. TiO2 on sand," Water research, vol. 25, no. 10, pp. 1169-1176, 1991.
    [40] P. R. Gogate and A. B. Pandit, "A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions," Advances in Environmental Research, vol. 8, no. 3-4, pp. 501-551, 2004.
    [41] J.-M. Wu and T.-W. Zhang, "Photodegradation of rhodamine B in water assisted by titania films prepared through a novel procedure," Journal of Photochemistry and Photobiology A: Chemistry, vol. 162, no. 1, pp. 171-177, 2004.
    [42] Y. Ma and J.-n. Yao, "Photodegradation of Rhodamine B catalyzed by TiO2 thin films," Journal of Photochemistry and Photobiology A: Chemistry, vol. 116, no. 2, pp. 167-170, 1998.
    [43] J. Liqiang et al., "Review of surface photovoltage spectra of nano-sized semiconductor and its applications in heterogeneous photocatalysis," Solar Energy Materials and Solar Cells, vol. 79, no. 2, pp. 133-151, 2003.
    [44] J. Li et al., "A microfluidic design to provide a stable and uniform in vitro microenvironment for cell culture inspired by the redundancy characteristic of leaf areoles," Lab on a Chip, vol. 17, no. 22, pp. 3921-3933, 2017.
    [45] S. Ryu, R. E. Pepper, M. Nagai, and D. C. France, "Vorticella: a protozoan for bio-inspired engineering," Micromachines, vol. 8, no. 1, p. 4, 2017.

    無法下載圖示 校內:2025-07-10公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE