簡易檢索 / 詳目顯示

研究生: 陳亮瑜
Chen, Liang-Yu
論文名稱: 費米能階釘札效應分析與金屬-絕緣層-半導體接面之無摻雜場效應電晶體模擬
Fermi-Level Pinning Effect Analysis and Simulation of Dopingless FETs with Metal-Insulator-Semiconductor Contacts
指導教授: 高國興
Kao, Kuo-Hsing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 奈米積體電路工程碩士博士學位學程
MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 104
中文關鍵詞: 無摻雜金屬-絕緣層-半導體接觸無接面隨機摻雜濃度導致的行為變化解除費米能階釘札蕭基能障理論
外文關鍵詞: dopingless, metal-insulator-semiconductor (MIS) contact, junctionless, random dopant fluctuation (RDF), Fermi-level depinning, Schottky barrier models
相關次數: 點閱:154下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著電子元件科技技術的發展,以及奈米元件尺寸越縮越小,傳統的金氧半場效應電晶體本身以及結構上有許多問題。為了要避免和克服這些挑戰,像是隨機摻雜濃度導致的行為變化、高溫度預算效應以及載子遷移率降低等等,有許多新的元件結構和操作概念都被提出來,其中一個就是無摻雜場效應電晶體。在無摻雜場效應電晶體裡面,載子式摻雜取代傳統的化學式(雜質)摻雜來克服傳統化學式摻雜的限制,且把隨機摻雜濃度導致的行為變化降到最低。這個特色讓無摻雜場效應電晶體成為有前途的未來電晶體科技以及先進元件製造候選者。
    在本論文中,我們討論傳統化學式摻雜的限制以及介紹離子電漿的概念,接著我們利用兩個不同種類的接觸:金屬-半導體及金屬-絕緣層-半導體,來討論這些接觸的電阻限制。接著我們更進一步詳細的討論幾個蕭特基(Schottky)能障理論且討論在異質接面中的費米能階釘札效應的推論與成因。這份研究主要仰賴於Sentaurus TCAD 來模擬與比較金屬-半導體與金屬-絕緣層-半導體無摻雜場效應電晶體。使用金屬-絕緣層-半導體而非金屬-半導體接面,無摻雜場效應電晶體可以在源/汲極有效減少金屬所導致的能隙能階。金屬-絕緣層-半導體無摻雜場效應電晶體更被討論能夠完全消滅無接面電晶體嚴重的隨機摻雜濃度導致的行為變化效應。我們也模擬出使用金屬-絕緣層-半導體接觸的無張力矽鍺無摻雜鰭式場效應電晶體以及奈米線場效應電晶體,且詳細地討論他們的電特性。基於這些我們所提出使用金屬-絕緣層-半導體接觸之無摻雜場效應電晶體、無接面場效應電晶體式場效應電晶體以及奈米線場效應電晶體,這些結果闡述了在先進奈米元件微縮下絕佳的潛力。

    As we develop electronic devices technology and reduce the devices dimensions, there have been several problems for the operation of the traditional MOSFETs and device manufacture. In order to prevent and avoid the challenges, such as random dopant fluctuation (RDF), thermal budget and mobility degradation…etc, several new device structures and operation concepts have been proposed, and one of them is the dopingless transistors. Traditional chemical (impurity) doping is replaced by electrostatic doping in dopingless devices in order to overcome the limitation of traditional chemical doping technique and to minimize RDF. The feature makes the dopingless transistor a promising candidate for future CMOS technologies and advanced device fabrication.
    In this thesis, we discuss the limitation of chemical doping and introduce the concept of charge plasma mechanism, then we utilize two different contacts and discuss the resistivity limitation of the contacts: metal-semiconductor (MS) and metal-insulator semiconductor (MIS) contacts. Next we further discuss several Schottky barrier models in detail and analyze the reason and effect of fermi-level pinning (FLP) at a heterojunction. This research relies on Sentaurus technology computer-aided design (TCAD) to simulate and compare dopingless transistors with MS and MIS contacts. Using the MIS instead of MS contacts, dopingless transistors can mitigate the fermi-level pinning effect at source/drain (S/D). Dopingless FETs with MIS contacts are also discussed to extinguish the considerable impacts of RDF in traditional doped junctionless FETs. We also simulate dopingless relaxed SiGe FinFETs and nanowire FETs with MIS contacts and analyze the electrical performances. Base on the simulation results of the novel dopingless transistors, JLFETs, FinFETs, and nanowire transistors with MIS contacts, they demonstrate superior potential for advanced nanoscale devices.

    摘要 III Abstract IV 誌謝 VI Contents VII Table Captions X Figure Captions XI Chapter I: Introduction and Motivation 1 1-1 Transistor Scaling and Various Device Structures 2 1-2 Traditional Chemical Doping: Status and Issues 3 1-3 Electrostatic Doping (Dopingless) Mechanism 5 1-4 Metal-Semiconductor (MS) Contacts 8 1-5 Motivation 9 1-6 Models Used in TCAD Simulations 10 1-6-1 Introduction to Synopsys Sentaurus TCAD 10 1-6-2 Fermi Statistics 10 1-6-3 Mobility Models 11 1-6-4 Band-to-Band Tunneling 11 1-6-5 Shockley-Read-Hall Generation and Trap-Assisted Tunneling 11 1-6-6 Bandgap Narrowing Models (BGN) 12 1-6-7 Non-local Barrier Tunneling (NLT) 13 1-6-8 SentaurusDevice: Physics Section 14 1-7 Organization and Outline of the Thesis 14 Chapter II : Fermi-level Pinning Models and MIS Contacts 16 2-1 Non-interacting Model 17 2-1-1 Schottky-Mott Model 17 2-1-2 Effective Workfunction Model (EWM) 17 2-2 Inkson’s Model 18 2-3 Interface States Models 19 2-3-1 Bardeen Model 19 2-3-2 Cowley-Sze Model 20 2-3-3 Metal-induced Gap States (MIGS) and Induced Gap States (IGS) Model 23 2-3-4 Defect Models: Unified Defect Model (UDM) 25 2-3-5 Defect Models: Disordered-induced Gap States (DIGS) Model 27 2-3-6 Other Perspectives 30 2-4 Combination Models 30 2-4-1 Concomitant-mechanism Model 30 2-4-2 Brillson’s Model 32 2-4-3 Chemical Bonding (Dipole) Model 33 2-5 Charge Neutrality Level Physics 34 2-6 MS and MIS Contacts (Fermi Level Depinning) 37 2-7 Fermi-level Pinning for High-k Material 45 2-8 Unified Trend for Fermi Level Pinning 47 2-9 Other Schematics for MS Interfaces 48 Chapter III : Dopingless FETs and JLFETs with MIS Contacts 49 3-1 Dopingless MIS FETs Structures 49 3-2 Dopingless Junctionless FETs 53 3-3 Summary 58 Chapter IV : Dopingless FETs in FinFET and GAA structures 59 4-1 Dopingless MIS Relaxed SiGe FinFETs 59 4-2 Dopingless Nanowire FETs 62 4-2-1 Threshold Voltage roll-off (Vth), SS and Ion 64 4-2-2 Band diagram, Current Density and e-Density 64 4-3 Summary 66 Chapter V : Conclusion and Future Direction 67 5-1 Conclusion 67 5-2 Future Direction 67 References in Chapter I 68 References in Chapter II 70 References in Chapter III 72 References in Chapter IV 73 Appendix I : Parameters of Various Materials for FLP 74 I-1 Parameters for Semiconductors 74 I-2 Parameters for Dielectrics 75 I-3 Parameters for FLP Factor of Dielectrics 76 Appendix II : FLP Factors for Various Contacts 77 II-1 Semiconductor Heterojunction 77 II-2 Insulator Heterojunction 79 II-3 Insulator-Semiconductor Interface 81 II-4 Metal-Metal Interface 83 II-5 Metal-Insulator-Metal Interface 84 II-6 Metal-Insulator-Semiconductor Interface 85 II-7 Metal-Semiconductor Interface 87 Appendix III : SDE Commands 88 III-1 Dopingless FETs with MIS Contacts (Single Gate) 88 III-2 Dopingless JLFETs with MS Contacts (Double Gate) 89 III-3 Dopingless JLFETs with MIS Contacts (Double Gate) 91 III-4 Dopingless Relaxed-SiGe FinFETs with MIS Contacts 92 III-5 Dopingless Nanowire FETs with MIS Contacts 94 Appendix IV : Calibration SDevice Commands for Newton Convergence 97 Appendix V : Various Schematics of MS Interface Models 100 References in Appendix I 103 References in Appendix II 103 References in Appendix V 103 Publication List 104

    References in Chapter I
    [1] Gordon E. Moore, “Cramming More Components Onto Integrated Circuits,” Electronics, pp. 114-117, April 19, 1965.
    [2] Frank schwierz, “Graphene Transistors,” Nature Nanotechnology 5, 487–496, 2010.
    [3] Q. Chen et al., “A Physical Short-Channel Threshold Voltage Model for Undoped Symmetric Double-Gate MOSFETs,” IEEE Transactions on Electron Devices, Vol. 50, No. 7, pp.1631-1637, July 2003.
    [4] Q. Chen et al., “A Comprehensive Analytical Subthreshold Swing (S) Model for Double-Gate MOSFETs,” IEEE Transactions on Electron Devices, Vol. 49, No. 6, pp.1086-1090, June 2002.
    [5] B. S. Doyle et al., “High Performance Fully-Depleted Tri-Gate CMOS Transistors,” IEEE Electron Device Letters, Vol. 24, No. 4, pp.263-265, April. 2003.
    [6] I. Ferain et al., “Mutigate Transistors As The Future of Classical Metal-Oxide-Semiconductor Field-Effect Transistors,” Nature 479, pp. 310-316, 2012
    [7] N. Chowdhury et al., “GaN Nanowire n-MOSFET With 5 nm Channel Length for Application in Digital Electronics,” IEEE Electron Device Letters, Vol. 38, No. 7, pp.859-862, July 2017.
    [8] J. P. Colinge et al., “Nanowire Transistors Without Junctions,” Nature Nanotechnology 5, pp. 225-229, 2010
    [9] C. Shin et al., “Study of Random-Dopant-Fluctuation (RDF) Effects for the Trigate Bulk MOSFET,” IEEE Transactions on Electron Devices, Vol. 56, No. 7, pp.1538-1542, July 2009.
    [10] G. Leung et al., “Variability Impact of Random Dopant Fluctuation on Nanoscale Junctionless FinFETs,” IEEE Electron Device Letters, Vol. 33, No. 6, pp.767-769, June 2012.
    [11] J. Regner, “An Analytical Approach To Quantify The Thermal Budget In Consideration Of Consecutive Thermal Process Steps,” 10th IEEE International Conference on Advanced Thermal Processing of Semiconductors, RTP 2002.
    [12] P. M. Rousseau et al., “A Model for Mobility Degradation in Highly Doped Arsenic Layers,” IEEE Transactions on Electron Devices, Vol. 43, No. 11, pp.2025-2027, November 1996.
    [13] G. Gupta et al., “Electrostatic Doping in Semiconductor Devices,” IEEE Transactions on Electron Devices, Vol. 64, No. 8, pp.3044-3055, August 2017.
    [14] W. H. Brattain et al., “Nature of The Forward Current In Germanium Point Contacts,” Phys. Rev., vol. 74, pp. 231-232, July. 1948.
    [15] R. J. E. Hueting et al., “The Charge Plasma P-N Diode,” IEEE Electron Device Letters, Vol. 29, No. 12, pp.1367-1369, December 2008.
    [16] Braun, F., Ann. Phys. (Leipzig) 153, 556, 1874.
    [17] W. Schottky, “Theory of The Blocking Layer,” Naturwiss. 26, 843, 1938.
    [18] W. Schottky, “Theory of Blocking Layer And Point Rectifiers,” Z. Phys. 113, 367, 1939.
    [19] W. Schottky, “Simplified And Extended Theory of Barrier Layer Rectifiers,” Z. Phys. 118, 539, 1942.
    [20] N.F. Mott, “Note On The Contact Between A Metal And An Insulator Or Semiconductor,” Proc. Camb. Phil. Soc. 34, 568, 1938.
    [21] N. F. Mott, “The Theory Of Crystal Rectifiers,” Proc. Roy. Soc., London A171, 27, 1939.
    [22] B. Davydov, “On the Contact Resistance of Semiconductors,” J. Phys. USSR 1, 167, 1939.
    [23] B. Davydov, “Transitional Resistances of Semiconductors,” J. Phys. USSR 4, 335, 1941.
    [24] J. Bardeen, “Surface States And Rectification At A Metal Semiconductor Contact,” Phys. Rev. 71, 717, 1947.
    [25] H. Yu et al., “Contact Resistivities of Metal-Insulator-Semiconductor Contacts And Metal-Semiconductor Contacts,” Applied Physics Letters, 108, 171602, 2016.
    [26] B. E. Coss et al., “Contact Resistance Reduction to FinFET Source/Drain Using Novel Dielectric Dipole Schottky Barrier Height Modulation Method,” IEEE Electron Device Letters, Vol. 32, No. 7, pp.862-864, July 2011.
    [27] D. Connelly et al., “A new Route to Zero-Barrier Metal Source/Drain MOSFETs,” IEEE Transactions on Nanotechnology, Vol. 3, No. 1, pp.98-104, March 2004.
    [28] A. Dimoulas et al., “Fermi-level Pinning And Charge Neutrality Level in Germanium,” Applied Physics Letters, 89, 252110, 2006.
    [29] K. Nayak et al., “Random Dopant Fluctuation Induced Variability in Undoped Channel Si Gate All Around Nanowire n-MOSFET,” IEEE Transactions on Electron Devices, Vol. 62, No. 2, pp.685-688, February 2015.
    [30] Sentaurus Device, Synopsys, Inc., Mountain View, CA, 2017.
    [31] F. E. Mamouni et al., “Gate-Length and Drain-Bias Dependence of Band-To-Band Tunneling (BTB) Induced Drain Leakage in Irradiated Fully Depleted SOI Devices,” Vanderbilt MURI meeting, May 2008.
    [32] T. Nishimura et al., “Evidence for Strong Fermi-level Pinning Due to Metal-induced Gap States at Metal/Germanium Interface,” Applied Physics Letters, 91, 123123, 2007.

    References in Chapter II
    [1] Braun, F., Ann. Phys. (Leipzig). 153, 556, 1874.
    [2] Schottky, W., Z. Phys. 118, 539-592, 1942.
    [3] J. L. Freeouf and J. M. Woodall, Appl. Phys. Lett., 39(9), 1, Nov. 1981.
    [4] J. C. Inkson, J. Phys. C: Solid State Phys., 6: 1350, 1973.
    [5] S. G. Louie and M. L. Cohen, Phys. Rev., B13: 2461, 1976.
    [6] Bardeen, J., Phys. Rev. 71, 717-727, 1947.
    [7] A. M. Cowley and S. M. Sze, “Surface States And Barrier Height of Metal-Semiconductor Systems,” J. Appl. Phys. 36, 3212, 1965.
    [8] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. New York, NY, USA: Wiley, 2007.
    [9] Heine, V., Phys. Rev., 138, A1689-A1696, 1965.
    [10] Tejedor, C., Flores, F., Louis, E., J. Phys. C., 10, 2163-2177, 1977.
    [11] Tersoff, J., Phys. Rev. Lett., 52, 465-468, 1984.
    [12] Lannoo, M., Friedel, P. (1991), in: Atomic and Electronic Structure of Surfaces, Springer Series in Surface Science 16, New York: Springer-Verlag, Chap. 7.
    [13] W. Mönch, “On The Present Understanding Of Schottky Contacts,” in Festkörperprobleme: Advances in Solid State Physics Vol. 26, Grosse, P. ed., Vieweg, Braunschweig, DME, p. 67 (1986).
    [14] Tersoff, J., Phys. Rev. Lett. 52, 465-468, 1984.
    [15] J. Robertson, “Band Offsets of Wide-Band-Gap Oxides And Implications for Future Electronic Devices,” J. Vac. Sci. Technol. B 18, 1785, 2000.
    [16] P.W. Peacock and J. Robertson, “Band Offsets And Schottky Barrier Heights of High Dielectric Constant Oxides,” J. Appl. Phys. 92, 4712, 2002.
    [17] J. F. Wager, “Transparent Electronics: Schottky Barrier And Heterojunction Considerations,” Thin Solid Films 516, 1755, 2008.
    [18] J. F. Wager and K. Kuhn, “Device Physics Modeling of Surfaces and Interfaces from an Induced Gap State Perspective,” Critical Reviews in Solid State and Material Sciences, 0, 0, 1-43, 2016.
    [19] Brillson L. J., Surf. Sci. Rep. 2 122-326, 1982.
    [20] Spicer W. E., Lindau I., Skeath P. and Yu C.Y., J. Vac. Sci. Technol. 17 1019, 1980.
    [21] Daw M. S. and Smith D. L., Phys. Reu. B 20 5150, 1979.
    [22] Williams R. H., J. Vac. Sci. Technol. 18 929, 1981.
    [23] Allen R. E. and Dow J. D., J. Vue. Sci. Technol. 19 383, 1979.
    [24] W. Mönch, Surf. Sci. 132 92, 1983.
    [25] Sankey O. F., Allen R. E. and Dow J. D., J. Vac. Sci. Technol. B 3 491, 1984a.
    [26] Sankey O. F., Allen R. E., Ren S. F. and Dow J. D., J . Vac. Sci. Technol. B 3 1182, 1985.
    [27] H. Hasegawa, Applied Surface Science 41/42, 372-382, 1989.
    [28] W.A. Harrison, Phys. Rev. Lett., 37, 312, 1976.
    [29] K.C. Pandey and C. M. Varma, unpublished, 1979.
    [30] W. Mönch, “Role of Virtual Gap States and Defects in Metal-Semiconductor Contacts,” Phys. Rev. Lett. 58, 12, 1260-1263, 1987.
    [31] L. J. Brillson, Surface Science, 299/300, 909-927, 1994.
    [32] R. T. Tung, “Formation of an Electric Dipole at Metal-Semiconductor Interfaces,” Phys. Rev. B., 64, 205310, 2001.
    [33] J. Robertson, “Band Offsets, Schottky Barrier Heights, And Their Effects On Electronic Devices,” Journal of Vacuum Science & Tech. A:Vacuum, Surface, and Films, 31, 050821, 2013.
    [34] Winfried Mönch, Rep. Prog. Phys. 53, pp.221-278, 1990.
    [35] D. Connelly, C. Faulkner, D. E. Grupp and J. S. Harris, “A New Route to Zero-Barrier Metal Source/Drain MOSFETs,” IEEE Transactions on Nanotech., vol. 3, no. 1, p. 98-104, 2004.
    [36] Raisul Islam, Journal of applied physics 105, 182103, 2014.
    [37] S. Gupta et al., “Contact Resistivity Reduction Through Interfacial Layer Doping In Metal-Interfacial Layer-Semiconductor Contacts,” Journal of Applied Phys., 113, 234505, 2013.
    [38] G. Shine and K. C. Saraswat, “Limits Of Specific Contact Resistivity to Si, Ge And III–V Semiconductors Using Interfacial Layers,” in Proc. Int. Conf. Simulation Semicond. Processes Devices (SISPAD), pp. 69–72, Sep. 2013.
    [39] M. Kobayashi, A. Kinoshita, K. Saraswat, H.-S. P. Wong, and Y. Nishi, “Fermi-level Depinning In Metal/Ge Schottky Junction And Its Application to Metal Source/Drain Ge NMOSFET,” in Proc. Symp. VLSI Technol., pp. 54–55, Jun. 2008.
    [40] J. F. Wager and J. Robertson, “Metal-induced Gap States Modeling of Metal-Ge Contacts With And Without A Silicon Nitride Ultrathin Interfacial Layer,” J. Appl. Phys., vol. 109, no. 9, p. 094501, May 2011.
    [41] M. Kadoshima, A. Ogawa, H. Ota, M. Ikeda, M. Takahashi, H. Satake, T. Nabatame, and A. Toriumi, “Two Different Mechanisms For Determining Effective Work Function (ϕm, eff) on High-k-physical Understanding And Wider Tunability of ϕm, eff-,” in VLSI Symp. Tech. Dig., pp. 226–227, 2006.

    References in Chapter III
    [1] B. Rajasekharan, R. J. E. Hueting, C. Salm, T. Van Hemert, R. A. M. Wolters, and J. chmitz, “Fabrication And Characterization of The Charge-plasma Diode,” IEEE Electron Device Lett., vol. 31, no. 6, pp. 528–530, Jun. 2010.
    [2] M. J. Kumar and S. Janardhanan, “Doping-less Tunnel Field Effect Transistor: Design and investigation,” IEEE Trans. Electron Devices, vol. 60, no. 10, pp. 3285–3290, Oct. 2013.
    [3] C. Sahu and J. Singh, “Charge-plasma Based Process Variation Immune Junctionless Transistor,” IEEE Electron Device Lett., vol. 35, no. 3, pp. 411–413, Mar. 2014.
    [4] C. Sahu and J. Singh, “Potential Benefits And Sensitivity Analysis of Dopingless Transistor For Low Power Applications,” IEEE Trans. Electron Devices, vol. 62, no. 3, pp. 729–735, Mar. 2015.
    [5] F. Bashir, S. A. Loan, M. Rafat, A. R. M. Alamoud, and S. A. Abbasi, “A High-performance Source Engineered Charge Plasma-based Schottky MOSFET on SOI,” IEEE Trans. Electron Devices, vol. 62, no. 10, pp. 3357–3364, Oct. 2015.
    [6] Sentaurus Device, Synopsys, Inc., Mountain View, CA, USA, 2013.
    [7] T. Nishimura, K. Kita, and A. Toriumi, “Evidence For Strong Fermi Level Pinning Due to Metal-induced Gap States at Metal/germanium Interface,” Appl. Phys. Lett., vol. 91, no. 12, p. 123123, 2007.
    [8] M. K. Husain, X. V. Li, and C. H. De Groot, “High-quality Schottky Contacts For Limiting Leakage Currents in Ge-based Schottky Barrier MOSFETs,” IEEE Trans. Electron Devices, vol. 56, no. 3, pp. 499–504, Mar. 2009.
    [9] H. Yu, M. Schaekers, K. Barla, N. Horiguchi, N. Collaert, A. V.-Y. Thean, and K. De Meyer, “Contact Resistivities of Metal-Insulator-Semiconductor Contacts and Metal-Semiconductor Contacts,” Appl. Phys. Lett., vol. 108, no. 17, p. 171602, 2016.
    [10] T. Nishimura, K. Kita, and A. Toriumi, “Evidence For Strong Fermi-level Pinning Due to Metal-induced Dap States at Metal/germanium Interface,” Appl. Phys. Lett., vol. 91, no. 12, p. 123123, 2007.
    [11] M. Luisier, A. Schenk, and W. Fichtner, “Three-dimensional Modeling of Gate Leakage in Si Nanowire Transistors,” in IEDM Tech. Dig., Dec. 2007.
    [12] K.-H. Kao and L.-Y. Chen, “A Dopingless FET With Metal–Insulator–Semiconductor Contacts,” IEEE Electron Device Lett., vol. 38, no. 1, pp. 5–8, Jan. 2017.
    [13] C.-W. Lee et al., “Performance Estimation of Junctionless Multigate Transistors,” Solid-State Electron., vol. 54, no. 2, pp. 97–103, Feb. 2010.
    [14] (2013). International Technology Roadmap for Semiconductor (ITRS). [Online]. Available: http://www.itrs2.net/

    References in Chapter IV
    [1] K. H. Kao, et al., “A Dopingless FET With Metal-Insulator-Semiconductor Contacts”, IEEE Electron Device Lett., 38, 5, 2017.
    [2] K. H. Kao, et al., “Compressively Strained SiGe Band-to-band Tunneling Model Calibration Based On p-i-n Diodes And Prospect of Strained SiGe Tunneling Field-effect Transistors”, J. Appl, Phys., 116, 214506, 2014.
    [3] L. Y. Chen, et al., “Undoped and Doped Junctionless FETs: Source/Drain Contacts and Immunity to Random Dopant Fluctuation”, IEEE Electron Device Lett., 38, 6, 2017.
    [4] Sentaurus Device, Synopsys, Inc., Mountain View, CA, 2017.
    [5] K. H. Kao, et al., “Direct and Indirect Band-to-Band Tunneling in Germanium-Based TFETs”, IEEE Trans. Electron Devices, 59, 292, 2012.
    [6] C. Sahu and J. Singh, “Potential Benefits And Sensitivity Analysis of Dopingless Transistor For Low Power Applications,” IEEE Trans. Electron Devices, vol. 62, no. 3, pp. 729–735, Mar. 2015.
    [7] S. Gupta et al., “Contact Resistivity Reduction Through Interfacial Layer Doping in Metal-Interfacial Layer-Semiconductor Contacts,” Appl. Phys. Lett., vol. 113, no. 23, p. 234505, 2013.
    [8] J. Wang et al, “Does Source-to-Drain Tunneling Limit The Ultimate Scaling of MOSFETs?,” IEEE IEDM, pp.707-710, 2002.

    References in Appendix I
    [1] J. Robertson, “Band Offsets, Schottky Barrier Heights, and Their Effects on Electronic Devices,” J. Vac. Sci. Technol. A 31, 050821, August 2013.

    References in Appendix II
    [1] J. F. Wager et al., “Device Physics Modeling of Surfaces and Interfaces from an Induced Gap State Perspective,” Critical Reviews in Solid State and Materials Sciences, Vol. 0, No. 0, pp.1-43, 2016.

    References in Appendix V
    [1] B. S. Eller et al., “Electronic Surface and Dielectric Interface States on GaN and AlGaN,” J. Vac. Sci. Technol. A, 31, 050807, 2013.
    [2] Hideki Hasegawa, “Fermi Level Pinning and Schottky Barrier Height Control at Metal-Semiconductor Interfaces of InP and Related Materials,” J. Journal of Appl. Phys., Vol. 38, pp.1098-1102, 1999.
    [3] Y.-C. Yeo et al., “Effects of High-k Gate Dielectric Materials on Metal and Silicon Gate Workfunctions,” IEEE Electron Device Lett., 23, 6, Jun. 2002.
    [4] Z. C. Yang et al., “Fermi-Level Pinning at Metal/High-k Interface Influnced by Electron State Density of Metal Gate,” IEEE Electron Device Lett., 31, 10, Oct. 2010.

    無法下載圖示 校內:2023-05-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE