| 研究生: |
田克威 Tien, Ko-Wei |
|---|---|
| 論文名稱: |
砷化鎵蝕刻廢液提取鎵資源暨鎵摻雜氧化鋅薄膜合成之研究 Recovery of Gallium from GaAs Waste Etching Solutions and Synthesis of Ga-Doped ZnO Thin Films |
| 指導教授: |
陳偉聖
Chen, Wei-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 鎵萃取 、Cyanex 272 、GZO薄膜 、水溶液法 |
| 外文關鍵詞: | Gallium extraction, Cyanex 272, GZO thin film, Aqueous method |
| 相關次數: | 點閱:104 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
砷化鎵被廣泛應用於半導體產業,然而在大量製造砷化鎵晶圓的過程中,會有許多砷化鎵蝕刻廢液產生。為了達到永續經營及循環經濟之目的,本研究將針對砷化鎵蝕刻廢液進行處理。本研究可分為兩大部分,第一部分以溶媒萃取法從砷化鎵模擬蝕刻廢液當中回收高純度的氯化鎵水溶液,並沉澱砷離子;第二部分將再生所獲得的氯化鎵水溶液應用於GZO薄膜合成。
第一部分萃取階段中,氯化鎵和硫化砷粉末被溶於氨水中,以用來模擬砷化鎵蝕刻廢液。而Cyanex 272以煤油稀釋至0.5 M並在pH 2、油水比為0.1、萃取時間為5分鐘的條件下,與模擬蝕刻廢液進行萃取反應,萃取效率可達到77.4%,透過四階的多階萃取,萃取效率可提升到99.5%。萃取完成後,會添加硫酸鐵粉末至富含砷離子的萃餘液當中,並在95℃、Fe/As比為10的條件下,將99.9%的砷離子沉澱,以達到環保署的放流水標準。反萃取階段中,0.5 M 的鹽酸被用來將油相中的鎵離子反萃取成氯化鎵水溶液。在油水比為1、反萃取時間為3分鐘的條件下,反萃取效率達到97.5%,氯化鎵水溶液純度可達99.95%。而氯化鎵水溶液中的鎵離子濃度與砷化鎵模擬蝕刻廢液相比,濃縮了約7倍。
第二部分GZO薄膜的合成,則以0.5 M的氯化鋅水溶液,摻雜0~5 at.%的鎵離子並添加1mL的介面活性劑後,旋轉塗佈於玻璃基板上。在600℃退火後,以X光繞射儀分析確認其為氧化鋅結構、掃描式電子顯微鏡觀察其表面型態與平整度、紫外光-可見光分光光譜儀分析可見光範圍的薄膜光穿透率。最終,GZO透明導電薄膜在3 at.%的摻雜率下擁有最佳的平整度,光穿透率在可見光範圍可達到90%以上。
This study aims to construct an eco-friendly circular economy system that recovers gallium chloride solution from waste GaAs etching solution and reuses in GZO thin films synthesis. This study divides into two parts, which is gallium extraction and GZO thin films synthesis. In the first part, the simulated GaAs etching solution was extracted using 0.5M Cyanex 272 at pH 2, 0.1 O/A ration for 5 min. The extraction efficiency was 77.5% which had the optimal ratio of concentration. The efficiency was improved to 99.5% through four steps extraction. In order to precipitate arsenic ions from the raffinate, the iron sulfate heptahydrates were added and 99.9% arsenic ions were precipitated when Fe/As ratio was 10. After extraction, the organic phase was stripped using 0.5M HCl at 1 O/A ratio for 3 min, the stripped efficiency attained 97.5%. The purity of recovered gallium chloride solution was 99.95% and the gallium was seven times the concentration of the simulated etching solutions. In the second part, GZO thin films were synthesized with 0.5M zinc chloride aqueous solution, 1 mL surfactant, and were doped with 0~5 at.% gallium. The precursor was coated on the glass substrate by spin coating and annealed at 600℃. Finally, the GZO thin film doped with 3 at.% gallium had an optimal surface and outstanding transmittance. The transmittance was higher than 90% in the visible region.
[1] W. Chen, L. Tsai, F. Tsai and C. Shu, "Recovery of Gallium and Arsenic from Gallium Arsenide Waste in the Electronics Industry", CLEAN - Soil, Air, Water, vol. 40, no. 5, pp. 531-537, 2012.
[2] A. Ramos-Ruiz, J. Field, W. Sun and R. Sierra-Alvarez, "Gallium Arsenide (GaAs) Leaching Behavior and Surface Chemistry Changes in Response to pH and O2", Waste Management, vol. 77, pp. 1-9, 2018.
[3] Customs Administration, Trade Statistics Search, https://portal.sw.nat.gov.tw/APGA/GA03E, April 20, 2020.
[4] U.S. Geological Survey, Mineral commodity summaries, Reston, Virginia, U.S.A., pp. 62-63, 2019.
[5] 王建楠, 吳宗穎, "砷化氫(Arsine)中毒與職業災害", 中華職業醫學雜誌, 7(4), pp. 169-176 , 2000。
[6] 行政院環境保護署, https://www.epa.gov.tw/, April 20, 2020.
[7] 蘇奕龍, "硫摻雜氧化鋅奈米線合成於軟性PET基板之壓電元件研究", 碩士論文, 國立台南大學, 2014。
[8] 楊明輝, "透明導電膜", 藝軒出版社, 臺北縣, 2006。
[9] 陳育裕, "探討以快速升溫爐成長掺雜鎵氧化鋅薄膜之結晶性、電性與光學性質", 碩士論文, 南台科技大學, 2009。
[10] A. J. Downs, "Chemistry of Aluminium, Gallium, Indium, and Thallium", Blackie Academic & Professional, Glasgow, pp. 1-110, 1993.
[11] K. J. Schulz, J. H. DeYoung, Jr., R. R. Seal II and D. C. Bradley, "Critical Mineral Resources of the United States—Economic and Environmental Geology and Prospects for Future Supply",U.S. Geological Survey Professional Paper, 1802, 797, 2017.
[12] 蕭宏, "半導體製程技術導論", 全華圖書股份有限公司, 台灣新北市, pp. 311-363, 2014。
[13] S. Adachi and K. Oe "Chemical Etching Characteristics of (001)GaAs", Journal of The Electrochemical Society, vol. 130, no. 12, pp. 2427-2435, 1983.
[14] Y. Tarui, Y. Komiya and Y. Harada, "Preferential Etching and Etched Profile of GaAs", Journal of The Electrochemical Society, vol. 118, no. 1, pp. 118-122, 1971.
[15] Y. Mori and N. Watanabe, "A New Etching Solution System, H3PO4-H2O2-H2O, for GaAs and Its Kinetics", Journal of The Electrochemical Society, vol. 125, no. 9, pp. 1510-1514, 1978.
[16] S. Iida and K. Ito, "Selective Etching of Gallium Arsenide Crystals in H2SO4-H2O2-H2O System", Journal of The Electrochemical Society, vol. 118, no. 5, pp. 768-771, 1971.
[17] X. S. Wu, L. A. Coldren and J. L. MERZ, "Selective Etching Characteristics of HF for AlxGa1-xAs/GaAs", Electronics Letters, vol. 21, no. 13, pp. 558-559, 1985.
[18] M. Lebedev, D. Ensling, R. Hunger, T. Mayer and W. Jaegermann, "Synchrotron Photoemission Spectroscopy Study of Ammonium Hydroxide Etching to Prepare Well-ordered GaAs(1 0 0) Surfaces", Applied Surface Science, vol. 229, no. 1-4, pp. 226-232, 2004.
[19] K. Torrance, H. Keenan, J. Sefcik, and A. Hursthouse, "Characterization of Arsenic Rich Waste Slurries Generated During Gallium Arsenide Wafer Lapping and Polishing", 2009 International Conference on Compound Semiconductor Manufacturing Technology, CS MANTECH 2009.
[20] T. Cheng, C. Liu, T. Tsai and Y. Shen, "A Process for the Recovery of Gallium from Gallium Arsenide Scrap", Processes, vol. 7, no. 12, p. 921, 2019.
[21] H. Lee and C. Nam, "A Study on the Extraction of Gallium from Gallium Arsenide Scrap", Hydrometallurgy, vol. 49, no. 1-2, pp. 125-133, 1998.
[22] W. T. Chen, Y. C. Chu, J. M. Wei, L. C. Tsai, F. C. Tsai, C. P. Lin and C. M. Shu, "Gallium and Arsenic Recovery from Waste Gallium Arsenide by Wet Refined Methods", Advanced Materials Research, vol. 194-196, pp. 2115-2118, 2011.
[23] W. T. Chen, L. C. Tsai, F. C. Tsai and C. M. Shu, "Recovery of Gallium and Arsenic from Gallium Arsenide Waste in the Electronics Industry", CLEAN - Soil, Air, Water, vol. 40, no. 5, pp. 531-537, 2012.
[24] J. Drápala and L. Kuchař, Metallurgy of pure metals, Cambridge International Science Pub., Cambridge, pp. 28-42, 2008.
[25] J. Zhang, B. Zhao and B. Schreiner, "Separation Hydrometallurgy of Rare Earth Elements", Springer Cham, Switzerland, pp. 55-168, 2016.
[26] M. Lee, J. Ahn and E. Lee, "Solvent Extraction Separation of Indium and Gallium from Sulphate Solutions Using D2EHPA", Hydrometallurgy, vol. 63, no. 3, pp. 269-276, 2002.
[27] S. Nusen, T. Chairuangsri, Z. Zhu and C. Cheng, "Recovery of Indium and Gallium from Synthetic Leach Solution of Zinc Refinery Residues Using Synergistic Solvent Extraction with LIX 63 and Versatic 10 acid", Hydrometallurgy, vol. 160, pp. 137-146, 2016.
[28] B. Bhattacharya, D. Mandal and S. Mukherjee, "Liquid–Liquid Extraction of Gallium(III) with LIX 26", Separation Science and Technology, vol. 38, no. 6, pp. 1417-1427, 2003.
[29] B. Gupta, N. Mudhar and I. Singh, "Separations and Recovery of Indium and Gallium Using Bis(2,4,4-trimethylpentyl)phosphinic Acid (Cyanex 272)", Separation and Purification Technology, vol. 57, no. 2, pp. 294-303, 2007.
[30] F. Liu et al., "Recovery and Separation of Gallium(III) and Germanium(IV) from Zinc Refinery Residues : Part II: Solvent Extraction", Hydrometallurgy, vol.171, pp.149-156, 2017.
[31] A. A. Geidarov, "Extractive Recovery of Gallium(III) from Acid Sulfate Solutions with Primary Amines", Russian Journal of Applied Chemistry, vol. 81, no. 12, pp. 2084-2087, 2008.
[32] S. D. Pawar and P. M. Dhadke, "Extraction and Separation Studies of Ga(III), In(III) and Tl(III) Using the Neutral Organophosphorous Extractant, Cyanex-923", Journal of the Serbian Chemical Society, vol. 68, no. 7, pp. 581-591, 2003.
[33] J. N. Iyer and P. M. Dhadke, "Liquid-liquid Extraction and Separation of Gallium(III), Indium(III), and Thallium(III) by Cyanex-925", Separation Science and Technology, vol. 36, no. 12, pp. 2773-2784, 2001.
[34] T. R. Bhat and S. Sundararajan, "The Extraction of Gallium Chloride by Tributyl Phosphate and the Recovery of Gallium from Bayer Liquor", Journal of the Less Common Metals, vol. 12, no. 3, pp. 231-238, 1967.
[35] R. A. Kumbasar and O. Tutkun, "Separation and Concentration of Gallium from Acidic Leach Solutions Containing Various Metal Ions by Emulsion Type of Liquid Membranes Using TOPO as Mobile Carrier", Hydrometallurgy, vol. 75, no. 1-4, pp. 111-121, 2004.
[36] Z. Zhao, L. Cui, Y. Guo, H. Li and F. Cheng, "Recovery of Gallium from Sulfuric Acid Leach Liquor of Coal Fly Ash by Stepwise Separation Using P507 and Cyanex 272", Chemical Engineering Journal, vol. 381, p. 122699, 2020.
[37] A. M. Nazari, R. Radzinski and A. Ghahreman, "Review of Arsenic Metallurgy: Treatment of Arsenical Minerals and the Immobilization of Arsenic", Hydrometallurgy, vol. 174, pp. 258-281, 2017.
[38] D. Moon, D. Dermatas and N. Menounou, "Arsenic Immobilization by Calcium–Arsenic Precipitates in Lime Treated Soils", Science of The Total Environment, vol. 330, no. 1-3, pp. 171-185, 2004.
[39] B. Hu, T. Yang, W. Liu, D. Zhang and L. Chen, "Removal of Arsenic from Acid Wastewater via Sulfide Precipitation and Its Hydrothermal Mineralization Stabilization", Transactions of Nonferrous Metals Society of China, vol. 29, no. 11, pp. 2411-2421, 2019.
[40] R.J. Bowell, "Assessment of Scorodite Precipitation from Mine Waters", Mine Water Risk Oppor., 1, pp. 91–97, 2018.
[41] D. Zhang, S. Wang, M. Gomez, Y. Wang and Y. Jia, "Long-term Stability of the Fe(III)–As(V) Coprecipitates: Effects of Neutralization Mode and the Addition of Fe(II) on Arsenic Retention", Chemosphere, vol. 237, pp. 124503, 2019.
[42] R. Shashanka, H. Esgin, V. Yilmaz and Y. Caglar, "Fabrication and Characterization of Green Synthesized ZnO Nanoparticle Based Dye-sensitized Solar Cells", Journal of Science: Advanced Materials and Devices, 2020.
[43] Q. Shi et al., "Single-phased Emission-tunable Mg and Ce Co-doped ZnO Quantum Dots for White LEDs", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 231, pp. 118096, 2020.
[44] C. Hsu, L. Chang and T. Hsueh, "Light-activated Humidity and Gas Sensing by ZnO Nanowires Grown on LED at Room Temperature", Sensors and Actuators B: Chemical, vol. 249, pp. 265-277, 2017.
[45] T. Nam, C. Lee, H. Kim and H. Kim, "Growth Characteristics and Properties of Ga-doped ZnO (GZO) Thin Films Grown by Thermal and Plasma-enhanced Atomic Layer Deposition", Applied Surface Science, vol.295, pp. 260-265, 2014.
[46] S. Nagar and S. Chakrabarti, "Optimisation of ZnO Thin Films", Springer, Singapore, pp. 1-8, 2017.
[47] A. Sáaedi, R. Yousefi, F. Jamali-Sheini, M. Cheraghizade, A. Khorsand Zak and N. Huang, "Optical and Electrical Properties of P-type Li-doped ZnO Nanowires", Superlattices and Microstructures, vol. 61, pp. 91-96, 2013.
[48] A. Haja Hameed, C. Karthikeyan, S. Sasikumar, V. Senthil Kumar, S. Kumaresan and G. Ravi, "Impact of Alkaline Metal Ions Mg2+, Ca2+, Sr2+ and Ba2+ on the Structural, Optical, Thermal and Antibacterial Properties of ZnO Nanoparticles Prepared by the Co-precipitation Method", Journal of Materials Chemistry B, vol. 1, no. 43, pp. 5950-5962, 2013.
[49] S. Bae, C. Na, J. Kang and J. Park, "Comparative Structure and Optical Properties of Ga-, In-, and Sn-Doped ZnO Nanowires Synthesized via Thermal Evaporation", The Journal of Physical Chemistry B, vol. 109, no. 7, pp. 2526-2531, 2005.
[50] R. Yousefi, A. Zak and F. Jamali-Sheini, "The Effect of Group-I Elements on the Structural and Optical Properties of ZnO Nanoparticles", Ceramics International, vol. 39, pp. 1371-1377, 2014.
[51] T. Schuler and M. Aegerter, "Optical, Electrical and Structural Properties of Sol Gel ZnO:Al Coatings", Thin Solid Films, vol. 351, no. 1-2, pp. 125-131, 1999.
[52] A. Khorsand Zak, N. Abd Aziz, A. Hashim and F. Kordi, "XPS and UV–vis Studies of Ga-doped Zinc Oxide Nanoparticles Synthesized by Gelatin Based Sol-gel Approach", Ceramics International, vol. 42, pp. 13605-13611, 2016.
[53] Y. Kim et al., "Effects of Electron Irradiation on the Properties of GZO Films Deposited with RF Magnetron Sputtering", Applied Surface Science, vol. 258, no. 8, pp. 3903-3906, 2012.
[54] V. Garg et al., "Investigation of Dual-Ion Beam Sputter-Instigated Plasmon Generation in TCOs: A Case Study of GZO", ACS Applied Materials & Interfaces, vol. 10, no. 6, pp. 5464-5474, 2018.
[55] J. Shin, D. Shin, H. Lee and J. Lee, "Properties of Multilayer Gallium and Aluminum Doped ZnO(GZO/AZO) Transparent Thin Films Deposited by Pulsed Laser Deposition Process", Transactions of Nonferrous Metals Society of China, vol. 21, pp. s96-s99, 2011.
[56] C. Chen, L. Hsiao and J. Chyi, "Low Resistivity and Low Compensation Ratio Ga-doped ZnO Films Grown by Plasma-assisted Molecular Beam Epitaxy", Journal of Crystal Growth, vol. 425, pp. 216-220, 2015.
[57] J. Zhao, X. Sun, H. Ryu and Y. Moon, "Thermally Stable Transparent Conducting and Highly Infrared Reflective Ga-doped ZnO Thin Films by Metal Organic Chemical Vapor Deposition", Optical Materials, vol. 33, no. 6, pp. 768-772, 2011.
[58] T. Terasako et al., "Carrier Transport and Photoluminescence Properties of Ga-doped ZnO Tilms Frown by Ion-plating and by Atmospheric-pressure CVD", Thin Solid Films, vol. 549, pp. 12-17, 2013.
[59] B. Ataev, A. Bagamadova, A. Djabrailov, V. Mamedov and R. Rabadanov, "Highly Conductive and Transparent Ga-doped Epitaxial ZnO Films on Sapphire by CVD", Thin Solid Films, vol. 260, no. 1, pp. 19-20, 1995.
[60] Y. Natsume and H. Sakata, "Zinc Oxide Films Prepared by Sol-gel Spin-coating", Thin Solid Films, vol. 372, no. 1-2, pp. 30-36, 2000.
[61] S. Shin et al., "Hydrothermally Grown ZnO Buffer Layer for the Growth of Highly (4wt%) Ga-doped ZnO Epitaxial Thin Films on MgAl2O4 (111) substrates", Journal of Crystal Growth, vol. 322, no. 1, pp. 45-50, 2011.
[62] T. Prasada Rao, M. Santhosh Kumar and N. Sooraj Hussain, "Effects of Thickness and Atmospheric Annealing on Structural, Electrical and Optical Properties of GZO Thin Films by Spray Pyrolysis", Journal of Alloys and Compounds, vol. 541, pp. 495-504, 2012.
[63] 白木靖寬, 吉田貞史, "薄膜工程學", 全華科技圖書股份有限公司, 台北市, pp. 1-1 - 2-76, 2006。
[64] 陳光華, 鄧金祥, "新型電子薄膜材料", 曉園, 臺北市, 2006。
[65] C. Brinker and G. Scherer, "Sol-gel Science: the Physics and Chemistry of Sol-gel Processing", Academic Press, Boston, 1990.
[66] 陳慧英, 黃定加, 朱晴億, "溶膠凝膠法在薄膜製備上的應用", 化工技術, 7, 11, pp. 152-167, 1999.
[67] 汪建民, "材料分析", 中國材料科學學會, 新竹市, 1998。
[68] M. F. Roberts and S. A. Jenekhe, "Lewis Acid Coordination Complexes of Polymers. 1. Boron Chloride, Aluminum Chloride and Gallium Chloride Complexes of Poly (p-phenylenebenzobisthiazole", Chemistry of Materials, vol. 5, no. 12, pp. 1744-1754, 1993.
[69] 林偉祺, "水溶液法成長氧化鋅薄膜及其薄膜電晶體製作", 碩士論文, 國立交通大學, 2007。
[70] F. Martin, H. Albers, P. Lambeck, G. Van de Velde and T. Popma, "Luminescent Thin Films by the Chemical Aerosol Deposition Technology (CADT)", Journal of Aerosol Science, vol. 22, pp. S435-S438, 1991.
[71] P. Nayak et al., "Spin-coated Ga-doped ZnO transparent conducting thin films for organic light-emitting diodes", Journal of Physics D: Applied Physics, vol. 42, no. 3, p. 035102, 2009.
[72] J. Yang, Y. Jiang, L. Li and M. Gao, "Structural, morphological, optical and electrical properties of Ga-doped ZnO transparent conducting thin films", Applied Surface Science, vol. 421, pp. 446-452, 2017.
[73] 邱柏叡, "溶膠凝膠法製備InGaZnO4透明導電薄膜的光電性質研究", 碩士論文, 國立交通大學, 2009。
[74] H. Wang et al., "Growth and Characterization of High Transmittance GZO Films Prepared by Sol-gel Method", Thin Solid Films, vol.615, pp. 19-24, 2020.
[75] R. Silva and M. Zaniquelli, "Aluminium-doped Zinc Oxide Films Prepared by an Inorganic Sol–gel Route", Thin Solid Films, vol. 449, no. 1-2, pp. 86-93, 2004.
[76] M. Manzari, M. Ahmadi and M. Sabet, "Preparation and Characterization of ZnO Thin Layers with Various Percentages of Gallium Impurities", Journal of Nanostructures, vol. 7, no. 3, pp. 194-199, 2017.