簡易檢索 / 詳目顯示

研究生: 蔣明澤
Jiang, Ming-Ze
論文名稱: 以數位光學斜掃描為基礎之無光罩微影技術應用於大面積任意圖形三維微結構之製作
Maskless Lithography Based on Digital Light Processing and Oblique Scanning for Large-Area Fabrication of Three-Dimensional Microstructures with Arbitrary Surface Profiles
指導教授: 李永春
Lee, Yung-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 158
中文關鍵詞: 無光罩微影數值迭代模擬演算法反卷積低差異數列紫外光圖案化線性漸變滲透熱回流斜掃描
外文關鍵詞: maskless lithography, numerical iterative simulation algorithm, deconvolution, low-discrepancy sequence, UV patterning, gradient dither, thermal reflow
相關次數: 點閱:107下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的研究主題是如何在一光阻 (Photoresist, PR) 層上以曝光與顯影的方式製作出大面積的三維微結構,方法是使用一種以數位微反射鏡裝置 (Digital Micro-mirror Device, DMD) 為基礎的無光罩式微影技術,可以精準調控投射在光阻層上的紫外光劑量。該系統搭配光點陣列的斜掃描以及紫外光源的閃爍,利用所開發之跳躍式斜掃描演算法 (Obliquely Scanning and Step Strobe-lighting , OS3L),針對任意表面形貌之獨立三維微結構建立一套數值迭代模擬演算法,以求得正確的曝光劑量。另外,針對高填充率之週期性三維微結構,則是使用反卷積 (Deconvolution) 的數學計算求得正確的曝光劑量分佈。
    在實驗方面,首先建立數種正光阻材料的曝光顯影反應曲線,以搭配數值模擬的結果,求得曝光粒子密度分佈,與最佳的實驗製程參數。同時結合低差異數列 (Low-Discrepancy Sequences) 之Halton序列分佈法,依照給定的解析度將曝光粒子密度在單位面積內均勻地實現,避免發生叢聚 (Cluster) 而導致實際曝光發生結構變形現象。有了該紫外光圖案化方法後,就能夠精準控制投射曝光劑量的空間分佈,從而在光阻顯影後獲得所需特徵尺寸的三維微結構。
    針對大面積曝光所產生之拼接縫 (Stitching Error) ,本研究亦提出一種基於相鄰掃描道重疊的滲透技術。透過量化分析結果,證明該方法能夠有效抑制拼接縫產生。本研究成功在曝光面積為 200x160 mm2的正光阻上,製作出軸對稱/非軸對稱之三維微結構。並在正光阻上製作面積為35x30 mm2 和20x20 mm2的週期性三維微結構,同時結合熱回流技術 (Thermal Reflow) 大幅降低微結構陣列表面之粗糙度,能夠應用於光學元件或製造鎳模具供大規模生產背光顯示的導光板。

    This study proposes a maskless lithography technology based on Digital Micromirror Device (DMD) to perform large-area and three-dimensional (3D) microstructure fabrication on a photoresist (PR) layer. This system along with an obliquely scanning and step strobe lighting (OS3L) algorithm developed earlier to precisely control the distribution of ultraviolet (UV) dose projected on the PR layer. For each individual 3D microstructure with an arbitrary surface topography, a numerical iterative simulation algorithm is developed to determine the optimal distribution of UV dose. As for periodic 3D microstructures, the UV dose distribution is determined mathematically from deconvolution calculation.
    In experiments, the characteristic curves of several positive and negative types of PRs are quantitatively determined. These information are used to optimize the experiment parameters and the density distribution of UV exposing points based on numerical simulation. The Halton sequence distribution method of low-discrepancy sequences is adopted to discretize the density distribution of UV exposing points with a given resolution, so that the UV exposing points can be evenly distributed within a unit area. With the UV patterning method, the spatial distribution of the projection exposure dose can be precisely controlled, so that three-dimensional microstructures with the required characteristics and surface profiles can be obtained after the photoresist is developed.
    Aiming at the stitching error caused by large-area exposure, this study also proposes a gradient dither method based on the overlapping of adjacent scanning slices. Through experimental testing, it is proved that this method can effectively suppress the stitching error. This study successfully fabricated axisymmetric/non-axisymmetric three-dimensional microstructure on a positive photoresist with an exposure area of 200x160 mm2. Additionally, we fabricated periodic three-dimensional microstructures on a positive photoresist with an area of 35x30 mm2 and 20x20 mm2, and combined thermal reflow to greatly reduce the roughness of the microstructure array surface. It can be used for optical components or to fabricate nickel molds for the mass production of light guide plates for backlight displays.

    摘要 I Abstract III 致謝 XV 目錄 XVI 圖目錄 XIX 表目錄 XXVIII 第一章 緒論 1 1.1 背景 1 1.2 文獻回顧 3 1.3 研究動機與目的 11 1.4 論文架構 17 第二章 高精度無光罩式微影曝光機設計與架構 18 2.1 光學引擎 20 2.2 X-Y-Z伺服位移平台 29 2.3 影像感測器 31 2.4 基於點座標之跳躍式斜掃描演算法與光源閃爍 33 第三章 非週期性三維微結構之無光罩式微影曝光 37 3.1 DMD投影光點測量與分析 37 3.2 光阻反應曲線 43 3.3 軸對稱三維微結構應用於導光板 55 3.3.1 軸對稱紫外光圖案化之理論研究 57 3.3.2 實驗結果與分析 63 3.4 非軸對稱三維微結構應用於導光板 65 3.4.1 非軸對稱紫外光圖案化之低差異數列理論研究 66 3.4.2 實驗結果與分析 84 3.5 抑制掃描道拼接間隙的邊界滲透法 88 3.5.1 拼接誤差量測與補償 89 3.5.2 相鄰掃描道重疊滲透法 97 3.5.3 恆定/線性漸變/餘弦漸變密度分佈 98 3.5.4 大面積曝光結果 105 第四章 週期性三維微結構之無光罩式微影曝光 107 4.1 週期性紫外光圖案化之反卷積理論研究 108 4.2 光學擴散片( Diffuser ) 109 4.2.1 光學擴散片之數值模擬結果與分析 110 4.2.2 實驗結果與分析 118 4.3 非球面微透鏡陣列 (MLA) 127 4.3.1 非球面微透鏡設計 128 4.3.2 非球面微透鏡陣列之數值模擬結果與分析 131 4.3.3 實驗結果與簡易光學檢測分析 140 第五章 結論與未來展望 151 5.1 結論 151 5.2 未來展望 152 參考文獻 154

    [1] E. Enriquez, D. Shreiber, E. Ngo, M. Ivill, S. Hirsch, C. Hubbard, and M. Cole. “Photolithography.” Optimization of Thick Negative Photoresist for Fabrication of Interdigitated Capacitor Structures. https://apps.dtic.mil/sti/pdfs/ADA615865.pdf [Accessed Jan 9, 2023].
    [2] H. Yasuda, T. Haraguchi, H. Yabara, K. Takahata, H. Murata, E. Rokuta, and H. Shimoyama, “Multiaxis and Multibeam Technology for High Throughput Maskless E-beam Lithography,” J. Vac. Sci. Technol. B, vol. 30, 06FC01, 2012.
    [3] B. Du, H. Zhang, J. Xia, J. Wu, H. Ding, and G. Tong, “Super-resolution Imaging with Direct Laser Writing-Printed Microstructures,” J. Phys. Chem. A, vol. 124, pp. 7211-7216, 2020.
    [4] K. Takahashi, and J. Setoyama, “A UV‐Exposure System using DMD.” Electron. Comm. Jpn. Pt. II, vol. 83(7), pp. 56-58, 2000.
    [5] Texas Instruments, “DLP7000 DLP® 0.7 XGA 2x LVDS Type A DMD,” DLPS026F datasheet, Aug. 2012 [Revised Jun. 2019].
    [6] Texas Instruments, “DLP6500 0.65 1080p MVSP Type A DMD,” DLPS040A datasheet, Oct. 2014 [Revised Oct. 2016].
    [7] 簡弘量, “光點陣列斜掃描無光罩式微影系統開發,” 國立成功大學機械工程學系博士論文, 2020.
    [8] K. F. Chan, Z. Feng, R. Yang, A. Ishikawa and W. Mei, “High-Resolution Maskless Lithography,” J. Microlithogr. Microfabr. Microsyst., vol. 2(4), pp. 331-339, 2003.
    [9] Y. Zhang, J. Luo, Z. Xiong, H. Liu, L. Wang, Y. Gu, Z. Lu, J. Li, and J. Huang, “User-Defined Microstructures Array Fabricated by DMD Based Multistep Lithography with Dose Modulation,” Opt. Express., vol. 27, No. 22/28, 2019.
    [10] C. Peng, Z. Zhang, J. Zou, and W. Chi, “A High-speed Exposure Method for Digital Micromirror Device Based Scanning Maskless Lithography System,” Int. J. Opt., vol. 185, pp. 1036-1044, 2019.
    [11] B. Yang, J. Zhou, Q. Chen, L. Lei, and K. Wen, “Fabrication of Hexagonal Compound Eye Microlens Array using DMD-Based Lithography with Dose Modulation,” Opt. Express., vol. 26, No. 22, 28927, 2018.
    [12] K. Zhong, Y. Gao, F. Li, N. Luo, and W. Zhang, “Fabrication of Continuous Relief Micro-Optic Elements using Real-Time Maskless Lithography Technique Based on DMD,” Opt. & Laser Technol., vol. 56, pp. 367-371, 2014.
    [13] A. Kaltashov, P. K. Parameshwar, N. Lin, and C. Moraes, “Accessible, Large-Area, Uniform Dose Photolithography using A Moving Light Source,” J. Micromech. Microeng., vol. 32, 027001, 2021.
    [14] M. A. Smith, S. Berry, L. Parameswaran, C. Holtsberg, N. Siegel, R. Lockwood, M. P. Chrisp, D. Freeman, and M. Rothschild, “Design, Simulation, and Fabrication of Three-Dimensional Microsystem Components Using Grayscale Photolithography,” J. Micro/Nanolithogr, MEMS, MOEMS., vol. 18, 043507, 2019.
    [15] L. Mosher, C. M. Waits, B. Morgan, and R. Ghodssi, “Double-Exposure Grayscale Photolithography,” J. Microelectromech. Syst., vol. 18, pp. 308-315, 2009.
    [16] B. Badawi, O. Sayadi, I. Eisele, and C. Kutter, “Three-State Lithography Model: An Enhanced Mathematical Approach to Predict Resist Characteristics in Grayscale Lithography Processes,” J. Micro/Nanopatterning, Mater. Metrol., vol. 20, 014601, 2021.
    [17] Y. Hirai, K. Sugano, T. Tsuchiya, and O. Tabata, “A Three-Dimensional Microstructuring Technique Exploiting The Positive Photoresist Property,” J. Micromech. Microeng., vol. 20, 065005, 2010.
    [18] X. Ma, Y. Kato, F. Kempen, Y. Hirai, T. Tsuchiya, F. Keulen, and O. Tabata, “Multiple Patterning with Process Optimization Method for Maskless DMD-Based Grayscale Lithography,” Procedia Eng., vol. 120, pp. 1091-1094, 2015.
    [19] H.-L. Chien and Y.-C. Lee, “Three Dimensional Maskless Ultraviolet Exposure System Based on Digital Light Processing,” Int. J. Precis. Eng. Manuf., vol. 21, pp. 937-945, 2020.
    [20] M. N. Hasan, D.-H. Dinh, H.-L. Chien, and Y.-C. Lee, “Maskless Beam Pen Lithography Based on Integrated Microlens Array and Spatial-Filter Array,” Opt. Eng., vol. 56, 115104, 2017.
    [21] D.-H. Dinh, H.-L. Chien, and Y.-C. Lee, “Maskless Lithography Based on Digital Micromirror Device (DMD) and Double Sided Microlens and Spatial-Filter Array,” Opt. & Laser Technol., vol. 113, pp. 407-415, 2019.
    [22] Z. Zhang, Y. Gao, N. Luo, et al, “Fast Fabrication of Curved Microlens Array Using DMD-Based Lithography,” AIP Advance., vol. 6, 015319, 2016.
    [23] H. Zhang, and S. Wen, “Microlens Array Based Three-dimensional Light Field Projection and Possible Applications in Photolithography,” Proc., vol. 11175, Optifab 2019.
    [24] W. Jin, H. Yoshio, Z. Fengyun, W. Xi, and S. Shufeng, “Variable Scattering Dots: Laser Processing Light Guide Plate Microstructures with Arbitrary Features and Arrangements,” Opt. & Laser Technol., vol. 136, 106732, 2021.
    [25] J. Wang and J. Dong, “Design of Flexible Optical Waveguide with High Uniformity and Efficiency for Light Therapies,” Opt. Lasers Eng., vol. 151, 2022.
    [26] N. Y. J. Tan, X. Zhang, D. W. K. Neo, R. Huang, K. Liu, and A. S. Kumar, “A Review of Recent Advances in Fabrication of Optical Fresnel Lenses,” J. Manuf. Process., vol. 71, pp. 113-133, 2021.
    [27] L. Wang, N. Luo, Z. Zhang, H. Xiao, L. Ma, Q. Meng, and J. Shi, “Rapid Fabrication of Sub-micron Scale Functional Optical Microstructures on The Optical Fiber End Faces by DMD-Based Lithography,” Opt. Express., vol. 30, pp. 676-688, 2022.
    [28] Z.-J. Lian, S.-Y. Hung, M.-H. Shen, and H. Yang, “Rapid Fabrication of Semiellipsoid Microlens Using Thermal Reflow with Two Different Photoresists,” Microelectron. Eng., vol. 115, pp. 46-50, 2014.
    [29] 許永昕, “利用斜掃描與頻閃技術之高精度無光罩式微影系統的開發與應用,” 國立成功大學機械工程學系博士論文, 2023。
    [30] J. A. Nelder and R. Mead, “A Simplex Method for Function Minimization,” J. Comput., vol. 7, pp. 308-313, 1965.
    [31] R. E. Caflisch, “Monte Carlo and Quasi-Monte Carlo Methods,” Acta Numerica., pp. 1-49, 1998.
    [32] H. Niederreiter, “Low-Discrepancy and Low-Dispersion Sequence,” J. Number Theory., vol. 30, pp. 51-70, 1998.
    [33] H. Chi, M. Mascagni, and T. Warnock, “On The Optimal Halton Sequence,” Math. Comput. Simul., vol. 70 , pp. 9-21, 2005.
    [34] H. Yuen, J. Princen, J. Illingworth, and J. Kittler, “Comparative Study of Hough Transform Methods for Circle Finding,” Image Vis. Comput., vol. 8, pp. 71-77, 1990.
    [35] X. Chen, Z. Sichao, S. Jinhai, and C. Yifang, “An Effective Approach for Reducing Surface Roughness of PMMA by Thermal Radiation Induced Local Reflow,” Microelectron. Eng., vol. 196, pp. 1-6, 2018.
    [36] H. S. Zhou, L. M. Jun, S. L. Guan, Q. J. Feng, and Z. Y. Quan, “Fabrication of High Quality Aspheric Microlens Array by Dose-Modulated Lithography and Surface Thermal Reflow,” Opt. & Laser Technol., vol. 100, pp. 298-303, 2018.

    無法下載圖示 校內:2028-08-21公開
    校外:2028-08-21公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE