簡易檢索 / 詳目顯示

研究生: 蘇亮誌
Su, Liang-Chih
論文名稱: 鐵氧化物吸附與鐵氧磁體法處理重金屬溶液之研究
Study on Treatment of Heavy Metal Solution by Adsorption of Iron Oxide and Ferrite Process
指導教授: 黃耀輝
Huang, Yao-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 158
中文關鍵詞: 重金屬TCLP鐵氧磁體程序吸附鐵氧化物
外文關鍵詞: Iron oxide, Adsorption, Ferrite process, TCLP, Heavy metals
相關次數: 點閱:68下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   重金屬污染問題普遍存在臺灣西部各地,主要藉由食物、飲水、呼吸等方式危害人體健康。由於重金屬進入人體後,會蓄積在人體某些器官中,往往需一、二十年才會顯現出來,造成慢性累積性中毒,因此重金屬污染不容忽視。本研究利用氧化鋁擔體覆膜鐵氧化物,針對銅、鎳、鉛、鋅等溶液進行吸附研究,包括吸附動力與平衡、背景電解質與水中干擾因子(硫酸根、磷酸根)對吸附反應之影響、多成份競爭吸附探討等,並觀察重金屬離子之脫附現象,藉此瞭解覆膜鐵氧化物對重金屬之吸(脫)附行為。
      首先對覆膜鐵氧化物顆粒進行鑑定與分析,由XRD與FTIR鑑定研判為針鐵礦、纖鐵礦與水合鐵礦之混合體。而酸鹼滴定結果顯示其pHzpc為7.35,BET分析指出其比表面積約為170 m2/g。
    吸附實驗結果顯示,四種重金屬離子達平衡所需時間為24~36小時。而不同背景電解質強度會影響吸附結果。以Freundlich及Langmuir等溫模式描述後,發現覆膜鐵氧化物之吸附行為並無特定趨勢,比較四種重金屬離子之Langmuir吸附模式所求得的飽和吸附量,顯示其大小分別為Cu>Pb>Zn>Ni。熱力學實驗表示,吸附過程為自發性反應,且四種重金屬離子之吸附熱分別為20.85 kJ/mol (Cu at pH=6)、26.27 kJ/mol (Ni at pH=8)、25.73 kJ/mol (Pb at pH=5)、21.74 kJ/mol (Zn at pH=7.5)。此外,當硫酸根或磷酸根存在時,皆會提升重金屬離子之吸附量,且磷酸根之影響較大,當四種重金屬離子共存於系統中時,彼此不會影響吸附量。而脫附結果顯示,覆膜鐵氧化物吸附重金屬離子過程可能伴隨化學鍵結。
      另一方面,本研究利用鐵氧磁體化程序處理高濃度之重金屬離子溶液。亞鐵來源為Fered-Fenton法處理染料溶液後,持續電解還原二小時所得,並與自行配製之重金屬離子溶液,在不同溫度及pH值下進行處理。實驗結果顯示高溫、高pH值的環境下,所形成之鐵氧磁體結構強,具有極佳的化學安定性,可通過毒性特性溶出程序檢驗。而過多的亞鐵離子反而會造成處理負擔,增加反應時間。

      Problems of heavy metal pollutions are commonly present in western part of Taiwan. They do great harm to human body via food, drinking water and breath. We have to think highly of heavy metal pollutions because they will hide and accumulate in some organs after going into human body. In this study, aluminum oxide is employed as support for coating iron oxide to adsorption for treatment of heavy metal solutions that contain copper, nickel, lead and zinc. Kinetic and equilibrium adsorption, the factors of background electrolyte, sulfate and phosphate, and competitive adsorption of multi-component are examined. Furthermore, desorption experiment is needed to give aids to understand the adsorption (desorption) phenomena of coating iron oxide particle.
      Firstly, we take appraisement and analysis for coating iron oxide particle. The results of XRD and FTIR showed that it is composed of goethite, lepidocrocite and ferrihydrite. Specific surface area is 170 m2/g by using BET analysis. And pHzpc is 7.35 by titration.
      A batch reactor with temperature control was used to determine kinetic adsorption and capacity for 4 kinds of heavy metals. The kinetic experiments showed that equilibrium is established after 24 hours for Cu, Ni, Zn, but 36 hours for Pb. The strength of electrolyte would affect the adsorption. Equilibrium experiment revealed the uptake of heavy metals is function of pH. Both Freundlich and Langmuir Isotherm Equations could successfully describe the equilibrium data. Taking comparison of Qm from Langmuir equation, we found out the capacity which is Cu>Pb>Zn>Ni. The investigation of Thermodynamics showed that ΔHads is 20.85 kJ/mole for Cu at pH=6, 26.27 kJ/mole for Ni at pH=8, 25.73 kJ/mole for Pb at pH=5, and 21.74 kJ/mole for Zn at pH=7.5.
      Sulfate or phosphate, which is present in system, would assist iron oxide to uptake heavy metals. And adsorption capacity isn’t under the influence of each other while four heavy metals are present simultaneously. Besides, desorption experiment indicated the behavior of adsorption involved in chemical bonding.
      On another part of this study, using ferrite process treated high concentration of heavy metal solutions. Ferrous ion was from Fered-Fenton wastewater treatment system. Ferrite process showed good results for treatment of heavy metal solutions. Ferrite, which was synthesized on high temperature and high pH, has find structure, and it could pass TCLP test. However, too much ferrous ion in this system may cause more loads for treatment, and increase reaction time.

    中文摘要.......................................I 英文摘要.......................................III 誌 謝.......................................V 目 錄.......................................VII 表目錄.......................................XII 圖目錄.......................................XIV 符 號.......................................XVIII 第一章 緒論....................................1 1-1 研究動機.................................1 1-2 研究目的與內容...........................2 第二章 文獻回顧................................4 2-1 重金屬來源、危害與特性...................4 2-1-1 重金屬污染............................4 2-1-2 重金屬之處理方法......................9 2-1-3 金屬氫氧化物溶解度積..................12 2-2 鐵氧化物特性與應用.......................15 2-2-1 鐵氧化物之種類........................15 2-2-2 鐵氧化物表面化學特性..................16 2-2-3 合成鐵氧化物..........................23 2-2-4 覆膜鐵氧化物..........................28 2-2-5 鐵氧化物之應用........................30 2-3 吸附理論.................................31 2-3-1 物理吸附..............................31 2-3-2 化學吸附..............................32 2-3-3 特定吸附與非特定吸附..................32 2-3-4 等溫吸附模式..........................35 2-3-5 背景電解質對吸附反應之影響............38 2-3-6 陽離子之吸附反應......................39 2-3-7 陰離子之吸附反應......................40 2-3-8 磷酸鹽對吸附反應之影響................41 2-4 鐵氧磁體程序.............................43 2-4-1 鐵氧磁體安定化原理....................43 2-4-2 鐵氧磁體法之應用......................45 第三章 實驗設備、材料與方法....................47 3-1 實驗架構.................................48 3-2 吸附材料基本性質鑑定.....................49 3-2-1 比表面積與孔隙分佈....................49 3-2-2 表面形態觀察..........................49 3-2-3 表面元素分析..........................50 3-2-4 晶相分析..............................50 3-2-5 化學結構分析..........................51 3-2-6 覆膜總鐵量分析........................52 3-2-7 草酸溶鐵量分析........................52 3-2-8 表面酸解離常數測定....................53 3-2-9 真密度與孔隙率量測....................55 3-3 吸附實驗.................................57 3-3-1 實驗藥品..............................57 3-3-2 實驗設備..............................57 3-3-3 實驗裝置..............................58 3-3-4 吸附材料篩選..........................58 3-3-5 恆溫吸附動力實驗......................59 3-3-6 恆溫吸附平衡實驗......................59 3-3-7 變溫吸附平衡實驗......................61 3-3-8 不同背景電解質強度之吸附實驗..........62 3-3-9 陰離子吸附效應........................62 3-3-10 多成份系統之競爭吸附實驗.............63 3-3-11 脫附實驗.............................63 3-4 鐵氧磁體程序.............................64 3-4-1 實驗藥品..............................64 3-4-2 實驗設備..............................64 3-4-3 實驗裝置..............................65 3-4-4 鐵氧磁體化實驗........................65 3-4-5 毒性特性溶出程序......................66 第四章 實驗結果與討論..........................67 4-1 吸附材料基本性質與篩選...................68 4-1-1 物理性質..............................68 4-1-2 篩選吸附材料..........................70 4-2 吸附材料之鑑定分析.......................73 4-2-1 晶相分析..............................73 4-2-2 表面形態觀察與元素分析................74 4-2-3 比表面積與孔隙分佈....................79 4-2-4 化學結構分析..........................81 4-2-5 表面酸解離常數測定....................83 4-2-6 抗酸性試驗............................87 4-3 吸附與脫附實驗...........................89 4-3-1 吸附平衡時間推算......................89 4-3-2 背景電解質之影響......................92 4-3-3 吸附量與pH值之關係....................95 4-3-4 等溫吸附曲線..........................98 4-3-5 溫度對吸附現象之影響..................104 4-3-6 陰離子效應............................108 4-3-7 競爭吸附系統..........................113 4-3-8 脫附現象觀察..........................117 4-4 吸附與脫附後固體鑑定.....................120 4-4-1 比表面積與孔隙分佈變化................120 4-4-2 表面元素分析..........................124 4-4-3 表面官能基變化........................127 4-5 鐵氧磁體化程序...........................129 4-5-1 亞鐵與重金屬莫耳比之影響..............129 4-5-2 溫度之影響............................133 4-5-3 溶液pH值之影響........................136 4-6 毒性特性溶出程序.........................141 4-6-1 鐵氧磁體檢測..........................141 4-6-2 添加物之效果..........................142 第五章 結論與建議..............................145 5-1 結論.....................................145 5-2 建議.....................................147 參考文獻.......................................148 附 錄.......................................155

    Ali M.A. and Dzombak D.A., Interactions of copper, organic acids, and sulfate in  goethite suspensions, Goechim. Cosmochim. Acta., 60, 5045, 1996.
    Atkinson R.J., Posner A.M. and Quirk J.P., Crystal nucleation in Fe(III)      solutions and hydroxide gels, Jour. Inorg. Nucl. Chem., 30, 2371, 1968.
    Bargar J.R., Brown Jr. G.E. and Parks G.A., Surface complexation of Pb(II) at   oxide-water interfaces: III. XAFS determination of Pb(II) and Pb(II)-chloro   adsorption complexes on goethite and alumina, Goechim. Cosmochim. Acta., 62,   193, 1998.
    Barrado E., Prieto F., Castrillejo Y., Medina J., Chemical and electrochemical   characterization of lead ferrites produced in the purification of lead-bearing  wastewater, Electrochimica Acta, 45, 1105, 1999.
    Barrado E., Prieto F., Garay F.J., Medina J., Vega M., Characterization of     nickel-bearing ferrites obtained as by-products of hydrochemical wastewater   purification processes, Electrochimica Acta, 47, 1959, 2002.
    Barrado E., Prieto F., Vega M. and Fernandez-Polanco F., Optimization of the    operational variables of a medium-scale reactor for metal-containing wastewater  purification by ferrite formation, Water Research, 32, 3055, 1998.
    Barrado E., Vega M., Pardo R., Grande P. and del Valle J.L., Optimization of a   chemical laboratory wastewater purification method by use of a Taguchi      parameter design, Water Research, 30, 2309, 1996.
    Barrow N.J., The effects of phosphate on zinc sorption by a soil, Jour. Soil    Sci., 38, 453, 1987.
    Benjamin M.M. and Leckie J.O., Multiple-site adsorption of Cd, Cu, Zn, and Pb on  amorphous iron oxyhydroxide, Jour. Colloid and Interface Sci., 79, 209, 1981.
    Benjamin M.M., Hayes K.F. and Leckie J.O., Removal of toxic metals from      power-generation waste streams by adsorption and coprecipitation, Jour. Water  Pollut. Control Fed., 54, 1472, 1982.
    Bohn H.L., Brian L.M. and George A. O’connor, Soil Chemistry Second edition,   John Wiley & Sons Inc., New York, 1985.
    Bolland M.D.A., Posner A.M. and Quirk J.P., Zinc adsorption by goethite in the   absence and presence of phosphate, Aust. Jour. Soil Res., 15, 279, 1977.
    Cornell R.M. and Schwertmann U., The Iron Oxides: Structure, Properties,      Reactions, Occurrence and Uses, Wiley-VCH, New York, 1996.
    Dinauer R.C., Weed S.B. and Dixon J.B., Minerals In Soil Environments, Chapter 8,  pp.379-438, SSSA, Madison Wis., USA, 1989.
    Edwards M. and Benjamin M.M., Regeneration and reuse of iron hydroxide adsorbents  in the treatment of metal-bearing wastes, Jour. Water Pollut. Control Fed., 61,  481, 1989.
    Hayes K.F. and Leckie J.O., Modeling ionic strength effects on cation adsorption  at hydrous oxide/solution interfaces, Jour. Colloid and Interface Science, 115,  564, 1987.
    Hayes K.F., Papelis C.P. and Leckie J.O., Modeling ionic strength effects on    anion adsorption at hydrous oxide/solution interfaces, Jour. Colloid and     Interface Science, 125, 717, 1988.
    Huang C.P. and Vane M.L., Enhancing As5+ removal by a Fe2+-treated activated    carbon, Jour. WPCF., 61, 1596, 1989.
    Ishikawa T., Kondo Y., Yasukawa A. and Kandori K., Formation of magnetite in the  presence of ferric oxyhydroxides, Corrosion Science., 40, 1239, 1998.
    Jain C.K. and Ram D., Adsorption of lead and zinc on bed sediments of the river  Kali, Water Research, 31, 154, 1997.
    Jobin R. and Ghosh M.M., Effect of buffer intensity and organic matter on the   oxygenation of ferrous iron, Jour. the American Water Works Association, 64,   590, 1972.
    Juang R.S. and Wu W.L., Adsorption of sulfate and copper(II) on goethite in    relation to the changes of zeta potentials, Jour. Colloid and Interface Sci.,  249, 22, 2002.
    Kanungo S.B., Adsorption of cations on hydrous oxides of iron: II. Adsorption of  Mn, Co, Ni, and Zn onto amorphous FeOOH from simple electrolyte solutions as   well as from a complex electrolyte solution resembling seawater in major ion   content, Jour. Colloid and Interface Sci., 162, 93, 1994.
    Katsura T., Tamaura Y. and Terada H., Treatment of the laboratory waste- waters  by the magnetic separation process, Indust. Water, 233, 16, 1977.
    Knocke W.R., Van Benschoten J.E., Kearney M., Soborski A. and Reckhow D.A.,    Kinetics of manganese and iron oxidation by potassium permanganate and chlorine  dioxide, Jour. the American Water Works Association, 83, 80, 1991.
    Kosmulski M., Standard enthalpies of adsorption of Di- and Trivalent cations on  alumina, Jour. Colloid and Interface Sci., 192, 215, 1997.
    Kosmulski M. and Maczka E., Dilatometric study of the adsorption of heavy metal  cation on goethite, Langmuir, 20, 2320, 2004.
    Lai C.H., Lo S.L. and Chiang H.L., Adsorption/desorption properties of copper   ions on the surface of iron-coated sand using BET and EDAX analyses,       Chemosphere, 41, 1249, 2000.
    Li L. and Stanforth R., Distinguishing adsorption and surface precipitation of   phosphate on goethite ( -FeOOH), Jour. Colloid Interface Sci., 230, 12, 2000.
    Mckenzie R.M., The adsorption of molybdenum on oxide surface, Jour. Soil Res.,   21, 505, 1983.
    Nordell E., Water Treatment for industrial and other uses, Second Edition,     Reinhold, New York, 1951.
    Nowack B. and Stone A.T., Adsorption of phosphonates onto the goethite -water   interface*1, Jour. Colloid and Interface Sci., 214, 20, 1999.
    Pivovarov S., Adsorption of Cadmium onto Hematite: Temperature Dependence, Jour.  Colloid Interface Sci., 234, 1, 2001.
    Posselt H.S., Anderson F.J. and Weber W.J.J., Cation sorption on colloidal     hydrous manganese dioxide, Environ. Sci. Technol., 2, 1087, 1968.
    Rietra R.P.J.J., Hiemstra T. and van Riemsdijk W.H., Electrolyte anion affinity  and its effect on oxyanion adsorption on goethite, Jour. Colloid and Interface  Sci., 229, 199, 2000.
    Robert M.S., Francis X.W., Spectrometric Identification of Organic Compounds    Sixth Edition, John Wiley & Sons Inc., New York, 1997.
    Rodda D.P., Johnson B.B. and Wells J.D., The effect of temperature and pH on the  adsorption of copper(II), lead(II), and zinc(II) onto goethite, Jour. Colloid  and Interface Sci., 161, 57, 1993.
    Rosenblatt D., Chlorine Dioxide: Chemical and Physical Properties., 1978.
    Sahai N. and Sverjensky D.A., Evaluation of internally consistent parameters for  the triple-layer model by the systematic analysis of oxide surface titration   data, Geochim. Cosmochim. Acta., 61, 2801, 1997.
    Schwertmann U., Gasser U. and Sticher H., Chromium for iron substitution in    synthetic goethites, Geochim. Cosmochim. Acta., 53, 1293, 1989.
    Sen T.K., Mahajan S.P. and Khilar K.C., Adsorption of Cu2+ and Ni2+ on iron oxide  and kaolin and its importance on Ni2+ transport in porous media, Colloids and  Surfaces A, 211, 91, 2002.
    Sposito G., The Chemistry of Soils, Oxford Univ. press, New York, 1989.
    Stumm W. and Lee G.F., Oxygenation of ferrous iron, Ind. and Engin. Chem., 53,   143, 1961.
    Swedlund P.J. and Webster J.G., Cu and Zn ternary surface complex formation with  SO4 on ferrihydrite and schwertmannite, Applied Geochemistry, 16, 503, 2001.
    Takagi N., Konno M. and Kobayashi T., Method of Producing Hydrated Iron Oxide.,  US4597958, Mitsui Mining & Smelting Co., JP.
    Tamaura Y. and Katsura T., What is the process ferrite, Kagaku Kogaku Ronbun, 28,  147, 1986.
    Tamaura Y., Katsura T., Rojarayanont S., Yoshida T. and Abe H., Ferrite process:  Heavy-metal ions treatment system, Water Sci. Tech., 23, 1893, 1991.
    Theis T.L., Iyer R. and Kaul L.W., Kinetic studies of cadmium and ferric- yanide  adsorption of goethite, Environment Sci. Technol., 22, 1013, 1988.
    Trivedi P. and Axe L., Ni and Zn sorption to amorphous versus crystalline iron   oxides: Macroscopic studies, Jour. Colloid and Interface Sci., 244, 221, 2001.
    Trivedi P., Axe L. and Dyer J., Adsorption of metal ions onto goethite: single   -adsorbate and competitive systems, Colloids and Surfaces A, 191, 107, 2001.
    Xie R.J. and Mackenzie A.F., Effects of sorbed orthophosphate on zinc status in  three soils of eastern Canada, Jour. Soil Sci., 40, 49, 1989.
    Zelazny L.M., Baligar V.C., Ritchey K.D. and Martens D.C., Ion strength effects  on sulfate and phosphate adsorption on γ-alumina and kaolinite: Triple-Layer  Model, Jour. Soil Sci. Am., 61, 784, 1997.
    內野和博, 小笠原武司, フエライト生成法による水溶液中の重金屬イオンの除去, 川崎製 鐵技術, 12, 665, 1980.
    王成財, 砷在水化鐵、鋁氧化物表面吸附特性之研究, 國立成功大學環境工程學系碩士論文,  1990.
    吳一民, 灰渣類廢棄物應用於廢水中有機物去除之研究, 國立成功大學環境工程研究所碩士 論文, 1997.
    吳錦昆, 林財富, 氧化鋁吸附水中砷之研究, 第二十四屆廢水處理技術研討會論文集,    pp.945-950, 1999.
    李敏華, 水質化學, 復漢出版社, 臺南市, 1992.
    周珊珊, 負載型FeOOH流體化床的開發:可行性、反應動力及最適化的研究, 國立交通大學環 境工程研究所博士論文, 1999.
    周珊珊, 黃耀輝, 黃志彬, 以流體化床觸媒反應槽氧化苯甲酸之研究, 第二十二屆廢水處理 研討會論文集, pp.573-581, 1998.
    周信輝, 都市垃圾焚化反應灰安定化之研究, 國立成功大學資源工程研究所碩士論文, 2001.
    范煥榮, 王大中, P.R. Anderson, Removal of Cu by Iron Oxide- Coated Granular    Activated Carbon, 中國環境工程學刊第十卷第三期, pp.193-199, 2000.
    孫嘉福, 駱尚廉, 以鐵氧化物覆膜石英砂去除水中六價鉻之探討, 中國土木水利工程學刊第 八卷第二期, pp.263-271, 1996.
    孫嘉福, 駱尚廉, 氧化鐵之特性與應用,自來水會刊雜誌第49期, pp.47-56, 1994.
    張毓寬, 鉻污泥資源化基礎研究, 國立成功大學資源工程研究所碩士論文, 2002.
    陳宥伸, 陳宏達, 吳俊毅, 蔡敏行, 張祖恩, 鐵氧磁體法處理垃圾焚化灰渣浸漬廢水之研究,  第二十八屆廢水處理技術研討會論文集, D-28, 2003.
    黃任偉, 粒狀氫氧化鐵吸附地下水中砷之研究, 國立成功大學環境工程研究所碩士論文,   2002.
    黃耀輝, 周珊珊, 黃志彬, 以流體化床觸媒反應槽氧化笨甲酸之研究, 第二十二屆廢水處理 研討會論文集, pp.573-581, 1998.
    樓基中, 涂耀仁, 張健桂, 分段式磁鐵化法處理含多種重金屬廢水, 第二十八屆廢水處理技 術研討會論文集, C-11, 2003.
    鄭仲凱, 氫氧化鐵吸附水中砷之動力與平衡研究, 國立成功大學環境工程研究所碩士論文,  2003.
    賴進興, 氧化鐵覆膜濾砂吸附過濾水中銅離子之研究, 國立臺灣大學環境工程研究所博士論 文, 1995.
    駱尚廉, 鄭宏德, 林正芳, 李達源, 氧化鐵覆膜濾料對重金屬吸附之研究, 中國土木水利工 程學刊第六卷第一期, pp.101-110, 1994.
    鍾瑞嬰, 磷酸根及重金屬離子在針鐵礦上之吸附平衡, 元智大學化學工程研究所碩士論文,  2002.

    下載圖示 校內:2005-07-06公開
    校外:2005-07-06公開
    QR CODE