| 研究生: |
蘇亮誌 Su, Liang-Chih |
|---|---|
| 論文名稱: |
鐵氧化物吸附與鐵氧磁體法處理重金屬溶液之研究 Study on Treatment of Heavy Metal Solution by Adsorption of Iron Oxide and Ferrite Process |
| 指導教授: |
黃耀輝
Huang, Yao-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 158 |
| 中文關鍵詞: | 重金屬 、TCLP 、鐵氧磁體程序 、吸附 、鐵氧化物 |
| 外文關鍵詞: | Iron oxide, Adsorption, Ferrite process, TCLP, Heavy metals |
| 相關次數: | 點閱:68 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
重金屬污染問題普遍存在臺灣西部各地,主要藉由食物、飲水、呼吸等方式危害人體健康。由於重金屬進入人體後,會蓄積在人體某些器官中,往往需一、二十年才會顯現出來,造成慢性累積性中毒,因此重金屬污染不容忽視。本研究利用氧化鋁擔體覆膜鐵氧化物,針對銅、鎳、鉛、鋅等溶液進行吸附研究,包括吸附動力與平衡、背景電解質與水中干擾因子(硫酸根、磷酸根)對吸附反應之影響、多成份競爭吸附探討等,並觀察重金屬離子之脫附現象,藉此瞭解覆膜鐵氧化物對重金屬之吸(脫)附行為。
首先對覆膜鐵氧化物顆粒進行鑑定與分析,由XRD與FTIR鑑定研判為針鐵礦、纖鐵礦與水合鐵礦之混合體。而酸鹼滴定結果顯示其pHzpc為7.35,BET分析指出其比表面積約為170 m2/g。
吸附實驗結果顯示,四種重金屬離子達平衡所需時間為24~36小時。而不同背景電解質強度會影響吸附結果。以Freundlich及Langmuir等溫模式描述後,發現覆膜鐵氧化物之吸附行為並無特定趨勢,比較四種重金屬離子之Langmuir吸附模式所求得的飽和吸附量,顯示其大小分別為Cu>Pb>Zn>Ni。熱力學實驗表示,吸附過程為自發性反應,且四種重金屬離子之吸附熱分別為20.85 kJ/mol (Cu at pH=6)、26.27 kJ/mol (Ni at pH=8)、25.73 kJ/mol (Pb at pH=5)、21.74 kJ/mol (Zn at pH=7.5)。此外,當硫酸根或磷酸根存在時,皆會提升重金屬離子之吸附量,且磷酸根之影響較大,當四種重金屬離子共存於系統中時,彼此不會影響吸附量。而脫附結果顯示,覆膜鐵氧化物吸附重金屬離子過程可能伴隨化學鍵結。
另一方面,本研究利用鐵氧磁體化程序處理高濃度之重金屬離子溶液。亞鐵來源為Fered-Fenton法處理染料溶液後,持續電解還原二小時所得,並與自行配製之重金屬離子溶液,在不同溫度及pH值下進行處理。實驗結果顯示高溫、高pH值的環境下,所形成之鐵氧磁體結構強,具有極佳的化學安定性,可通過毒性特性溶出程序檢驗。而過多的亞鐵離子反而會造成處理負擔,增加反應時間。
Problems of heavy metal pollutions are commonly present in western part of Taiwan. They do great harm to human body via food, drinking water and breath. We have to think highly of heavy metal pollutions because they will hide and accumulate in some organs after going into human body. In this study, aluminum oxide is employed as support for coating iron oxide to adsorption for treatment of heavy metal solutions that contain copper, nickel, lead and zinc. Kinetic and equilibrium adsorption, the factors of background electrolyte, sulfate and phosphate, and competitive adsorption of multi-component are examined. Furthermore, desorption experiment is needed to give aids to understand the adsorption (desorption) phenomena of coating iron oxide particle.
Firstly, we take appraisement and analysis for coating iron oxide particle. The results of XRD and FTIR showed that it is composed of goethite, lepidocrocite and ferrihydrite. Specific surface area is 170 m2/g by using BET analysis. And pHzpc is 7.35 by titration.
A batch reactor with temperature control was used to determine kinetic adsorption and capacity for 4 kinds of heavy metals. The kinetic experiments showed that equilibrium is established after 24 hours for Cu, Ni, Zn, but 36 hours for Pb. The strength of electrolyte would affect the adsorption. Equilibrium experiment revealed the uptake of heavy metals is function of pH. Both Freundlich and Langmuir Isotherm Equations could successfully describe the equilibrium data. Taking comparison of Qm from Langmuir equation, we found out the capacity which is Cu>Pb>Zn>Ni. The investigation of Thermodynamics showed that ΔHads is 20.85 kJ/mole for Cu at pH=6, 26.27 kJ/mole for Ni at pH=8, 25.73 kJ/mole for Pb at pH=5, and 21.74 kJ/mole for Zn at pH=7.5.
Sulfate or phosphate, which is present in system, would assist iron oxide to uptake heavy metals. And adsorption capacity isn’t under the influence of each other while four heavy metals are present simultaneously. Besides, desorption experiment indicated the behavior of adsorption involved in chemical bonding.
On another part of this study, using ferrite process treated high concentration of heavy metal solutions. Ferrous ion was from Fered-Fenton wastewater treatment system. Ferrite process showed good results for treatment of heavy metal solutions. Ferrite, which was synthesized on high temperature and high pH, has find structure, and it could pass TCLP test. However, too much ferrous ion in this system may cause more loads for treatment, and increase reaction time.
Ali M.A. and Dzombak D.A., Interactions of copper, organic acids, and sulfate in goethite suspensions, Goechim. Cosmochim. Acta., 60, 5045, 1996.
Atkinson R.J., Posner A.M. and Quirk J.P., Crystal nucleation in Fe(III) solutions and hydroxide gels, Jour. Inorg. Nucl. Chem., 30, 2371, 1968.
Bargar J.R., Brown Jr. G.E. and Parks G.A., Surface complexation of Pb(II) at oxide-water interfaces: III. XAFS determination of Pb(II) and Pb(II)-chloro adsorption complexes on goethite and alumina, Goechim. Cosmochim. Acta., 62, 193, 1998.
Barrado E., Prieto F., Castrillejo Y., Medina J., Chemical and electrochemical characterization of lead ferrites produced in the purification of lead-bearing wastewater, Electrochimica Acta, 45, 1105, 1999.
Barrado E., Prieto F., Garay F.J., Medina J., Vega M., Characterization of nickel-bearing ferrites obtained as by-products of hydrochemical wastewater purification processes, Electrochimica Acta, 47, 1959, 2002.
Barrado E., Prieto F., Vega M. and Fernandez-Polanco F., Optimization of the operational variables of a medium-scale reactor for metal-containing wastewater purification by ferrite formation, Water Research, 32, 3055, 1998.
Barrado E., Vega M., Pardo R., Grande P. and del Valle J.L., Optimization of a chemical laboratory wastewater purification method by use of a Taguchi parameter design, Water Research, 30, 2309, 1996.
Barrow N.J., The effects of phosphate on zinc sorption by a soil, Jour. Soil Sci., 38, 453, 1987.
Benjamin M.M. and Leckie J.O., Multiple-site adsorption of Cd, Cu, Zn, and Pb on amorphous iron oxyhydroxide, Jour. Colloid and Interface Sci., 79, 209, 1981.
Benjamin M.M., Hayes K.F. and Leckie J.O., Removal of toxic metals from power-generation waste streams by adsorption and coprecipitation, Jour. Water Pollut. Control Fed., 54, 1472, 1982.
Bohn H.L., Brian L.M. and George A. O’connor, Soil Chemistry Second edition, John Wiley & Sons Inc., New York, 1985.
Bolland M.D.A., Posner A.M. and Quirk J.P., Zinc adsorption by goethite in the absence and presence of phosphate, Aust. Jour. Soil Res., 15, 279, 1977.
Cornell R.M. and Schwertmann U., The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses, Wiley-VCH, New York, 1996.
Dinauer R.C., Weed S.B. and Dixon J.B., Minerals In Soil Environments, Chapter 8, pp.379-438, SSSA, Madison Wis., USA, 1989.
Edwards M. and Benjamin M.M., Regeneration and reuse of iron hydroxide adsorbents in the treatment of metal-bearing wastes, Jour. Water Pollut. Control Fed., 61, 481, 1989.
Hayes K.F. and Leckie J.O., Modeling ionic strength effects on cation adsorption at hydrous oxide/solution interfaces, Jour. Colloid and Interface Science, 115, 564, 1987.
Hayes K.F., Papelis C.P. and Leckie J.O., Modeling ionic strength effects on anion adsorption at hydrous oxide/solution interfaces, Jour. Colloid and Interface Science, 125, 717, 1988.
Huang C.P. and Vane M.L., Enhancing As5+ removal by a Fe2+-treated activated carbon, Jour. WPCF., 61, 1596, 1989.
Ishikawa T., Kondo Y., Yasukawa A. and Kandori K., Formation of magnetite in the presence of ferric oxyhydroxides, Corrosion Science., 40, 1239, 1998.
Jain C.K. and Ram D., Adsorption of lead and zinc on bed sediments of the river Kali, Water Research, 31, 154, 1997.
Jobin R. and Ghosh M.M., Effect of buffer intensity and organic matter on the oxygenation of ferrous iron, Jour. the American Water Works Association, 64, 590, 1972.
Juang R.S. and Wu W.L., Adsorption of sulfate and copper(II) on goethite in relation to the changes of zeta potentials, Jour. Colloid and Interface Sci., 249, 22, 2002.
Kanungo S.B., Adsorption of cations on hydrous oxides of iron: II. Adsorption of Mn, Co, Ni, and Zn onto amorphous FeOOH from simple electrolyte solutions as well as from a complex electrolyte solution resembling seawater in major ion content, Jour. Colloid and Interface Sci., 162, 93, 1994.
Katsura T., Tamaura Y. and Terada H., Treatment of the laboratory waste- waters by the magnetic separation process, Indust. Water, 233, 16, 1977.
Knocke W.R., Van Benschoten J.E., Kearney M., Soborski A. and Reckhow D.A., Kinetics of manganese and iron oxidation by potassium permanganate and chlorine dioxide, Jour. the American Water Works Association, 83, 80, 1991.
Kosmulski M., Standard enthalpies of adsorption of Di- and Trivalent cations on alumina, Jour. Colloid and Interface Sci., 192, 215, 1997.
Kosmulski M. and Maczka E., Dilatometric study of the adsorption of heavy metal cation on goethite, Langmuir, 20, 2320, 2004.
Lai C.H., Lo S.L. and Chiang H.L., Adsorption/desorption properties of copper ions on the surface of iron-coated sand using BET and EDAX analyses, Chemosphere, 41, 1249, 2000.
Li L. and Stanforth R., Distinguishing adsorption and surface precipitation of phosphate on goethite ( -FeOOH), Jour. Colloid Interface Sci., 230, 12, 2000.
Mckenzie R.M., The adsorption of molybdenum on oxide surface, Jour. Soil Res., 21, 505, 1983.
Nordell E., Water Treatment for industrial and other uses, Second Edition, Reinhold, New York, 1951.
Nowack B. and Stone A.T., Adsorption of phosphonates onto the goethite -water interface*1, Jour. Colloid and Interface Sci., 214, 20, 1999.
Pivovarov S., Adsorption of Cadmium onto Hematite: Temperature Dependence, Jour. Colloid Interface Sci., 234, 1, 2001.
Posselt H.S., Anderson F.J. and Weber W.J.J., Cation sorption on colloidal hydrous manganese dioxide, Environ. Sci. Technol., 2, 1087, 1968.
Rietra R.P.J.J., Hiemstra T. and van Riemsdijk W.H., Electrolyte anion affinity and its effect on oxyanion adsorption on goethite, Jour. Colloid and Interface Sci., 229, 199, 2000.
Robert M.S., Francis X.W., Spectrometric Identification of Organic Compounds Sixth Edition, John Wiley & Sons Inc., New York, 1997.
Rodda D.P., Johnson B.B. and Wells J.D., The effect of temperature and pH on the adsorption of copper(II), lead(II), and zinc(II) onto goethite, Jour. Colloid and Interface Sci., 161, 57, 1993.
Rosenblatt D., Chlorine Dioxide: Chemical and Physical Properties., 1978.
Sahai N. and Sverjensky D.A., Evaluation of internally consistent parameters for the triple-layer model by the systematic analysis of oxide surface titration data, Geochim. Cosmochim. Acta., 61, 2801, 1997.
Schwertmann U., Gasser U. and Sticher H., Chromium for iron substitution in synthetic goethites, Geochim. Cosmochim. Acta., 53, 1293, 1989.
Sen T.K., Mahajan S.P. and Khilar K.C., Adsorption of Cu2+ and Ni2+ on iron oxide and kaolin and its importance on Ni2+ transport in porous media, Colloids and Surfaces A, 211, 91, 2002.
Sposito G., The Chemistry of Soils, Oxford Univ. press, New York, 1989.
Stumm W. and Lee G.F., Oxygenation of ferrous iron, Ind. and Engin. Chem., 53, 143, 1961.
Swedlund P.J. and Webster J.G., Cu and Zn ternary surface complex formation with SO4 on ferrihydrite and schwertmannite, Applied Geochemistry, 16, 503, 2001.
Takagi N., Konno M. and Kobayashi T., Method of Producing Hydrated Iron Oxide., US4597958, Mitsui Mining & Smelting Co., JP.
Tamaura Y. and Katsura T., What is the process ferrite, Kagaku Kogaku Ronbun, 28, 147, 1986.
Tamaura Y., Katsura T., Rojarayanont S., Yoshida T. and Abe H., Ferrite process: Heavy-metal ions treatment system, Water Sci. Tech., 23, 1893, 1991.
Theis T.L., Iyer R. and Kaul L.W., Kinetic studies of cadmium and ferric- yanide adsorption of goethite, Environment Sci. Technol., 22, 1013, 1988.
Trivedi P. and Axe L., Ni and Zn sorption to amorphous versus crystalline iron oxides: Macroscopic studies, Jour. Colloid and Interface Sci., 244, 221, 2001.
Trivedi P., Axe L. and Dyer J., Adsorption of metal ions onto goethite: single -adsorbate and competitive systems, Colloids and Surfaces A, 191, 107, 2001.
Xie R.J. and Mackenzie A.F., Effects of sorbed orthophosphate on zinc status in three soils of eastern Canada, Jour. Soil Sci., 40, 49, 1989.
Zelazny L.M., Baligar V.C., Ritchey K.D. and Martens D.C., Ion strength effects on sulfate and phosphate adsorption on γ-alumina and kaolinite: Triple-Layer Model, Jour. Soil Sci. Am., 61, 784, 1997.
內野和博, 小笠原武司, フエライト生成法による水溶液中の重金屬イオンの除去, 川崎製 鐵技術, 12, 665, 1980.
王成財, 砷在水化鐵、鋁氧化物表面吸附特性之研究, 國立成功大學環境工程學系碩士論文, 1990.
吳一民, 灰渣類廢棄物應用於廢水中有機物去除之研究, 國立成功大學環境工程研究所碩士 論文, 1997.
吳錦昆, 林財富, 氧化鋁吸附水中砷之研究, 第二十四屆廢水處理技術研討會論文集, pp.945-950, 1999.
李敏華, 水質化學, 復漢出版社, 臺南市, 1992.
周珊珊, 負載型FeOOH流體化床的開發:可行性、反應動力及最適化的研究, 國立交通大學環 境工程研究所博士論文, 1999.
周珊珊, 黃耀輝, 黃志彬, 以流體化床觸媒反應槽氧化苯甲酸之研究, 第二十二屆廢水處理 研討會論文集, pp.573-581, 1998.
周信輝, 都市垃圾焚化反應灰安定化之研究, 國立成功大學資源工程研究所碩士論文, 2001.
范煥榮, 王大中, P.R. Anderson, Removal of Cu by Iron Oxide- Coated Granular Activated Carbon, 中國環境工程學刊第十卷第三期, pp.193-199, 2000.
孫嘉福, 駱尚廉, 以鐵氧化物覆膜石英砂去除水中六價鉻之探討, 中國土木水利工程學刊第 八卷第二期, pp.263-271, 1996.
孫嘉福, 駱尚廉, 氧化鐵之特性與應用,自來水會刊雜誌第49期, pp.47-56, 1994.
張毓寬, 鉻污泥資源化基礎研究, 國立成功大學資源工程研究所碩士論文, 2002.
陳宥伸, 陳宏達, 吳俊毅, 蔡敏行, 張祖恩, 鐵氧磁體法處理垃圾焚化灰渣浸漬廢水之研究, 第二十八屆廢水處理技術研討會論文集, D-28, 2003.
黃任偉, 粒狀氫氧化鐵吸附地下水中砷之研究, 國立成功大學環境工程研究所碩士論文, 2002.
黃耀輝, 周珊珊, 黃志彬, 以流體化床觸媒反應槽氧化笨甲酸之研究, 第二十二屆廢水處理 研討會論文集, pp.573-581, 1998.
樓基中, 涂耀仁, 張健桂, 分段式磁鐵化法處理含多種重金屬廢水, 第二十八屆廢水處理技 術研討會論文集, C-11, 2003.
鄭仲凱, 氫氧化鐵吸附水中砷之動力與平衡研究, 國立成功大學環境工程研究所碩士論文, 2003.
賴進興, 氧化鐵覆膜濾砂吸附過濾水中銅離子之研究, 國立臺灣大學環境工程研究所博士論 文, 1995.
駱尚廉, 鄭宏德, 林正芳, 李達源, 氧化鐵覆膜濾料對重金屬吸附之研究, 中國土木水利工 程學刊第六卷第一期, pp.101-110, 1994.
鍾瑞嬰, 磷酸根及重金屬離子在針鐵礦上之吸附平衡, 元智大學化學工程研究所碩士論文, 2002.