| 研究生: |
楊予瑄 Yang, Yu-Hsuan |
|---|---|
| 論文名稱: |
五溝水濕地魚類功能群落對局部棲地變化的反應 Fish functional community responses to local habitat variation in Wu Gou Shui Wetland. |
| 指導教授: |
孫建平
Suen, Jian-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 魚類功能群 、環境變遷 、主成分分析 、廣義線性模型 |
| 外文關鍵詞: | Fish Functional Groups, Environmental Change, Generalized Linear Model, Principal Component Analysis |
| 相關次數: | 點閱:52 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人類長期的土地開發往往影響自然資源,導致棲地退化與物種多樣性減少,進而威脅生態系統的穩定性。本研究旨在整合水域魚群的棲息地偏好,並結合當地土地利用與治水工程的影響,分析魚群對環境變遷的反應,最後透過評估局部棲息地的變化,客觀的描述魚群的需求,為未來的生態保育與環境改善提供科學依據,促進更友善的水域管理策略。
本研究位於屏東縣五溝水的三個水域區域(水門區、屋背溝區、下游區),透過長期的調查數據和環境變化的整合,觀察魚群對環境變遷的反應。使用魚群作為分析對象,可以更廣泛的反應物種間的生態模式及環境變化,有助於更加全面的了解水域生態系統。本研究以功能群將魚種以四個功能特徵進行分類,分別代表了魚種的食性、棲息水層、游泳能力和體型大小;並另外使用主成分分類則代表水域中的重要魚種,包括短吻紅斑吻鰕虎(Rhinogobius rubromaculatus)與半紋小鲃(Puntius semifasciolatus)等。透過水深、水質等環境參數代表在時空上的環境的變動,例如下游區的擾動使導電度變化,屋背溝區及水門區的土地利用類型導致酸鹼度不同。最後利用廣義線性模型將魚群與環境參數連結,這種模式的優點在於適用大部分資料,並用逐步推論方法選出對魚群而言重要的參數。
結論顯示三個水域中的魚類功能群落各有不同的棲地偏好條件,結合各魚群與相關的環境參數進行討論,解釋魚類密度如何跟著與水域周邊的環境,又或是魚群本身的適應能力和耐受性導致其差異微小,並進一步探討魚群應對環境變遷的方式。
Human land development has long impacted natural resources, leading to habitat degradation and reduced species diversity, threatening ecosystem stability. This study integrates fish habitat preferences with local land use and water management effects to analyze fish responses to environmental changes. We provide scientific insights for ecological conservation and sustainable aquatic management by assessing habitat shifts.
Conducted in three regions of Wu Gou Shui, Pingtung( Watergate Wubeigou, and Downstream), this study uses long-term data to examine fish-environment interactions. Fish species were classified into functional groups based on feeding habits, swimming ability, and habitat preference. Key species, including Rhinogobius rubromaculatus and Puntius semifasciolatus, were identified using principal component analysis. Environmental parameters such as water depth and pH variations were analyzed, with a generalized linear model (GLM) linking fish distribution to key environmental factors.
Results show distinct habitat preferences among fish assemblages, influenced by local conditions and species adaptability. This study highlights how fish populations respond to environmental changes, offering valuable insights for conservation and sustainable water resource management.
Abell, R., Thieme, M. L., Revenga, C., Bryer, M., Kottelat, M., Bogutskaya, N., ... & Petry, P. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. BioScience, 58(5), 403-414. (2008).
Alsfeld, A. J., Bowman, J. L., & Deller‐Jacobs, A. The influence of landscape composition on the biotic community of constructed depressional wetlands. Restoration Ecology, 18, 370-378. (2010).
Anderson, D. R., & Burnham, K. P. Avoiding pitfalls when using information-theoretic methods. The Journal of wildlife management, 912-918. (2002).
Angermeier, P. L., & Karr, J. R. Fish communities along environmental gradients in a system of tropical streams. Environmental Biology of fishes, 9, 117-135. (1983).
Arif, M., Tahir, M., Jie, Z., & Changxiao, L. Impacts of riparian width and stream channel width on ecological networks in main waterways and tributaries. Science of the Total Environment, 792, 148457. (2021).
Arnold, G. Rheotropism in fishes. Biological reviews, 49(4), 515-576. (1974).
Bain, M. B., Finn, J. T., & Booke, H. E. A quantitative method for sampling riverine microhabitats by electrofishing. North American Journal of Fisheries Management, 5(3B), 489-493. (1985).
Baxter, C., Hauer, F. R., & Woessner, W. W. Measuring groundwater–stream water exchange: new techniques for installing minipiezometers and estimating hydraulic conductivity. Transactions of the American Fisheries Society, 132(3), 493-502. (2003).
Boulton, A. J. Hyporheic rehabilitation in rivers: restoring vertical connectivity. Freshwater Biology, 52(4), 632-650. (2007).
Brumberg, H., Beirne, C., Broadbent, E. N., Zambrano, A. M. A., Zambrano, S. L. A., Gil, C. A. Q., et al. Riparian buffer length is more influential than width on river water quality: A case study in southern Costa Rica. Journal of environmental management, 286, 112132. (2021).
Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H. H., & White, J. S. S. Generalized linear mixed models: a practical guide for ecology and evolution. Trends in ecology & evolution, 24(3), 127-135. (2009).
Burns, M. D., & Sidlauskas, B. L. Ancient and contingent body shape diversification in a hyperdiverse continental fish radiation. Evolution, 73(3), 569-587. (2019).
Chen, C. W. Concepts and utilities of ecologic model. Journal of the Sanitary Engineering Division, 96(5), 1085-1097. (1970).
Choi, B., Kang, H., & Lee, W. H. Baseflow contribution to streamflow and aquatic habitats using physical habitat simulations. Water, 10(10), 1304. (2018).
Dasgupta, S., Blankespoor, B., & Wheeler, D. Toward Better Conservation: A Spatial Analysis of Species Occurrence Data from the Global Biodiversity Information Facility. Earth System Science Data Discussions, 2024, 1-27. (2024).
Earon, R., Riml, J., Wu, L., & Olofsson, B. Insight into the influence of local streambed heterogeneity on hyporheic-zone flow characteristics. Hydrogeology Journal, 28(8), 2697-2712. (2020).
Frissell, C. A., Liss, W. J., Warren, C. E., & Hurley, M. D. A hierarchical framework for stream habitat classification: viewing streams in a watershed context. Environmental management, 10, 199-214. (1986).
Gerasimov, Y. V., Borisenko, E. S., Bazarov, M. I., & Stolbunov, I. A. Density and distribution of fish in a river with a pronounced heterogeneity of the environment: Hydroacoustic survey. Inland Water Biology, 12, 69-75. (2019).
Gilmore, G. R. Environmental and biogeographic factors influencing ichthyofaunal diversity: Indian River Lagoon. Bulletin of Marine Science, 57(1), 153-170. (1995).
Göthe, E., Degerman, E., Sandin, L., Segersten, J., Tamario, C., & Mckie, B. G. Flow restoration and the impacts of multiple stressors on fish communities in regulated rivers. Journal of Applied Ecology, 56(7), 1687-1702. (2019).
Han, J., Lee, D., Lee, S., Chung, S.-W., Kim, S. J., Park, M., et al. Evaluation of the effect of channel geometry on streamflow and water quality modeling and modification of channel geometry module in SWAT: A case study of the Andong Dam Watershed. Water, 11(4), 718. (2019).
Hatano, Kesayoshi. Device and method for capturing carnivorous fish. (2006).
Householder, J. E., Wittmann, F., Schöngart, J., Piedade, M. T. F., Junk, W. J., Latrubesse, E. M., et al. One sixth of Amazonian tree diversity is dependent on river floodplains. Nature ecology & evolution, 8(5), 901-911. (2024).
Jackson, D. A. Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology, 74(8), 2204-2214. (1993).
Jargal, N., Atique, U., Kim, J.-Y., Mamun, M., & An, K.-G. Functional trait analysis and the multi-metric integrity model, based on stream fish indicators, and their relations to chemical water quality. Water, Air, & Soil Pollution, 233(12), 511. (2022).
Jargal, N., Mamun, M., Choi, C.-Y., & An, K.-G. Combining functional diversity of lotic fish communities with river health assessment based on multi-metric chemical pollution and biological integrity index models. Frontiers in Environmental Science, 10, 1012420. (2022).
Kruse, M. Ecosystem health indicators. Encyclopedia of ecology, 1, 407-414. (2019).
Kondraju, T. T., & Rajan, K. S. Water quality in inland water bodies: hostage to the intensification of anthropogenic land uses. Journal of the Indian Society of Remote Sensing, 47(11), 1865-1874. (2019).
Ladds, M. A., Sibanda, N., Arnold, R., & Dunn, M. R. Creating functional groups of marine fish from categorical traits. PeerJ, 6, e5795. (2018).
Legendre, P., & Legendre, L. Ecological resemblance. In Developments in environmental modelling (Vol. 24, pp. 265-335). Elsevier. (2012).
Lévêque, C. Etat de santé des écosystèmes aquatiques: l’intérêt des variables biologiques. Séminaire national: Les variables biologiques: des indicateurs de l’état de santé des écosystèmes aquatiques, Paris, 1994, 11-26. (1994).
Liao, C., Chen, S., Correa, S. B., Ye, S., Zhang, T., & Liu, J. Longitudinal habitat gradient affects diet and body condition of riverine fish: A case study of Pelteobagrus catfishes in the Three Gorges Reservoir, China. River Research and Applications, 38(9), 1601-1608. (2022).
Liu, Y., Zhou, Z., Ge, L., & Wang, S. Characteristics of key biological assemblage dynamics and biotic integrity assessment in the upper yellow river, China. Polish Journal of Environmental Studies, 33(5). (2024).
Lowe, W. H., Likens, G. E., & Power, M. E. Linking scales in stream ecology. BioScience, 56(7), 591-597. (2006).
Macdonald, A., & Macdonald, A. Adaptation to high pressure in the laboratory. Life at high pressure: in the deep sea and other environments, 327-352. (2021)
Maćkiewicz, A., & Ratajczak, W. Principal components analysis (PCA). Computers & Geosciences, 19(3), 303-342. (1993).
Marengo, M., Iborra, L., Leduc, M., Lejeune, P., Boissery, P., & Gobert, S. Assessing spatial and temporal trends in a Mediterranean fish assemblage structure. Diversity, 13(8), 368. (2021).
Mariu, A., Chatha, A. M. M., Naz, S., Khan, M. F., Safdar, W., & Ashraf, I. Effect of temperature, ph, salinity and dissolved oxygen on fishes. Journal of Zoology and Systematics, 1(2), 1-12. (2023).
McCullagh, P. Generalized linear models: Routledge. (2019).
McPhee, D., Watson, J. R., Harding, D. J., Prior, A., Fawcett, J. H., Franklin, C. E., & Cramp, R. L. Body size dictates physiological and behavioural responses to hypoxia and elevated water temperatures in Murray cod (Maccullochella peelii). Conservation Physiology, 11(1), coac087. (2023).
Naugle, D. E., Johnson, R. R., Estey, M. E., & Higgins, K. F. A landscape approach to conserving wetland bird habitat in the prairie pothole region of eastern South Dakota. Wetlands, 21(1), 1-17. (2001).
Nayak, A., & Bhushan, B. Wetland ecosystems and their relevance to the environment: importance of wetlands Handbook of research on monitoring and evaluating the ecological health of wetlands (pp. 1-16): IGI Global. (2022).
O'Hara, R. B. How to make models add up—a primer on GLMMs. In Annales Zoologici Fennici (Vol. 46, No. 2, pp. 124-137). Finnish Zoological and Botanical Publishing Board. (2009).
Park, K., Kim, J. M., & Jung, D. GLM‐based statistical control r‐charts for dispersed count data with multicollinearity between input variables. Quality and Reliability Engineering International, 34(6), 1103-1109. (2018).
Pedersen, J. Discrimination of fish layers using the three-dimensional information obtained by a split-beam echo-sounder. ICES Journal of Marine Science, 53(2), 371-376. (1996).
Peterson, E. E., Theobald, D. M., & Ver Hoef, J. M. Geostatistical modelling on stream networks: developing valid covariance matrices based on hydrologic distance and stream flow. Freshwater biology, 52(2), 267-279. (2007).
Poff, N. L., & Allan, J. D. Functional organization of stream fish assemblages in relation to hydrological variability. Ecology, 76(2), 606-627. (1995).
Quesnelle, P. E., Fahrig, L., & Lindsay, K. E. Effects of habitat loss, habitat configuration and matrix composition on declining wetland species. Biological Conservation, 160, 200-208. (2013).
Ramachandra, T., Asulabha, K., Sincy, V., & Jaishanker, R. Wetlands for human well-being. Journal of Environmental Biology, 45(2), i-iv. (2024).
Ranta, E., Rita, H., & Crawley, M. J. GLIM for Ecologists. Journal of Animal Ecology, 63(3), 742. (1994).
Reichard, M. 1Institute of vertebrate biology, czech academy of sciences, czech republic, 2department of botany and zoology, masaryk university, czech republic, 3department of ecology and vertebrate zoology, faculty of biology and environmental protection, university of łodz, Łodz, Poland. (2022).
Rice, J. C. Understanding fish habitat ecology to achieve conservation. Journal of Fish Biology, 67, 1-22. (2005).
Rideout, N. K., Compson, Z. G., Monk, W. A., Bruce, M. R., Hajibabaei, M., Porter, T. M., et al. Environmental filtering of macroinvertebrate traits influences ecosystem functioning in a large river floodplain. Functional Ecology, 36(11), 2791-2805. (2022).
Rivett, M. O., Buss, S. R., Morgan, P., Smith, J. W., & Bemment, C. D. Nitrate attenuation in groundwater: a review of biogeochemical controlling processes. Water research, 42(16), 4215-4232. (2008).
Schmutz, S., Bakken, T. H., Friedrich, T., Greimel, F., Harby, A., Jungwirth, M., ... & Zeiringer, B. Response of fish communities to hydrological and morphological alterations in hydropeaking rivers of Austria. River research and applications, 31(8), 919-930. (2015).
Shrestha, A. K., & Basnet, N. The correlation and regression analysis of physicochemical parameters of river water for the evaluation of percentage contribution to electrical conductivity. Journal of Chemistry, 2018(1), 8369613. (2018).
Singh, T., Gupta, S., Chiogna, G., Krause, S., & Wohlmuth, B. Impacts of peak‐flow events on hyporheic denitrification potential. Water Resources Research, 58(3), e2021WR031407. (2022).
Sterrett, S., Smith, L., Golladay, S., Schweitzer, S., & Maerz, J. The conservation implications of riparian land use on river turtles. Animal Conservation, 14(1), 38-46. (2011).
Tracy, E. E., Infante, D. M., Cooper, A. R., & Taylor, W. W. An ecological resilience index to improve conservation action for stream fish habitat. Aquatic Conservation: Marine and Freshwater Ecosystems, 32(6), 951-966. (2022).
Valladares, F. Más biodiversidad para mejorar la salud: Los beneficios de favorecer ecosistemas funcionales y diversos en el bienestar humano. Metode Science Studies Journal, 111–117-111–117. (2023).
Vaux, P. D., Whittier, T. R., DeCesare, G., & Kurtenbach, J. P. Evaluation of a backpack electrofishing unit for multiple lake surveys of fish assemblage structure. North American Journal of Fisheries Management, 20(1), 168-179. (2000).
Villéger, S., Mason, N. W., & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, 89(8), 2290-2301. (2008).
Vlach, P., Dusek, J., Svátora, M., & Moravec, P. Fish assemblage structure, habitat and microhabitat preference of five fish species in a small stream. FOLIA ZOOLOGICA-PRAHA-, 54(4), 421. (2005).
Wegscheider, B., Linnansaari, T., Monk, W. A., Ndong, M., Haralampides, K., St‐Hilaire, A., ... & Curry, R. A. Quantitative modelling of fish habitat in a large regulated river in a changing climate. Ecohydrology, 15(5), e2318. (2022).
Wohl, E., Angermeier, P. L., Bledsoe, B., Kondolf, G. M., MacDonnell, L., Merritt, D. M., et al. River restoration. Water Resources Research, 41(10). (2005).
Wyżga, B., Amirowicz, A., Radecki‐Pawlik, A., & Zawiejska, J. Hydromorphological conditions, potential fish habitats and the fish community in a mountain river subjected to variable human impacts, the Czarny Dunajec, Polish Carpathians. River Research and Applications, 25(5), 517-536. (2009).
Zuur, A. F., Ieno, E. N., & Smith, G. M. Principal component analysis and redundancy analysis. Analysing ecological data, 193-224. (2007).
內政部營建署城鄉發展分屬,五溝濕地棲地營造及保育計畫。取自https://wetland-tw.nps.gov.tw/tw/Ecology.php?keyword=&t=1568779650&pn=20&pf=2。(2016)
李鎮宇。 基於功能特徵方法評估渠道化工程對魚類群落的影響。國立成功大學水利及海洋工程學系碩士論文,台南。(2019). 取自 https://hdl.handle.net/11296/6778j7
汪靜明。河川生物多樣性的內涵與生態保育。環境教育, 38, 34-44. (1999).
周銘泰 & 高瑞卿。 台灣淡水及河口魚圖鑑,晨星出版,(2011)
林馳源。伏流水對地表逕流水質與魚類影響之研究。國立成功大學水利及海洋工程學系碩士論文。(2013). 取自https://hdl.handle.net/11296/w4f9g6
邵廣昭。臺灣魚類資料庫 網路電子版 http://fishdb.sinica.edu.tw, (2025-2-4)
屏東縣政府文化處,屏東縣五溝聚落水岸圳道調查研究暨保存維護計畫。(2014)
屏東縣政府文化處,萬巒鄉五溝水客家生態聚落營造計畫。(2019)
柯柏隆。淡水蝦於水生植物棲息地利用與環境因子之關係。國立成功大學水利及海洋工程學系碩士論文。(2022)。 取自https://hdl.handle.net/11296/5e77m9
洪楷欽。利用線性及非線性模型預測淡水魚類豐度 : 以屏東五溝水地區為例。國立成功大學水利及海洋工程學系碩士論文。(2023)。 取自https://hdl.handle.net/11296/33en24
馮孟婕。 臺灣繁殖鳥類物種多樣性、功能多樣性、及演化獨特性指數在不同棲地類型中的相關性。碩士論文,國立臺灣大學。(2022)。 取自華藝線上圖書館。
鄭弘偉、趙詩華. 商品設計-風險分類原理、技術工具與經營分析的應用廣義線性模型理論與R之應用。取自http://www.airc.org.tw/newsfiles/r.pdf
鄭楷穎,李夌容,李怡璇,黃富敏,黃大駿,梁世雄,& 邱郁文。 工程前後對水域生物物種組成的影響—以五溝水為例。濕地學刊, 4(1), 81-90. (2015).
校內:2028-02-14公開