| 研究生: |
張皓婷 Chang, Hao-Ting |
|---|---|
| 論文名稱: |
拉伸並固定DNA分子於電滲流微流道生醫晶片之研究 Study of Stretching and Immobilizing DNA Molecules on Electro-osmotic Flow Microfabricated Fluidic Bio-chip |
| 指導教授: |
林裕城
Lin, Yu-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 奈米科技暨微系統工程研究所 Institute of Nanotechnology and Microsystems Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 微機電系統技術 、電滲流 、DNA 拉伸 、表面親疏水性改質 |
| 外文關鍵詞: | Hydrophilic and Hydrophobic Modified, MEMS, EOF, DNA Stretching |
| 相關次數: | 點閱:115 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要設計兩種生物晶片,分別是單一微流道與多重微流道晶片,藉由電滲流作用於不同的親疏水性表面,使DNA拉伸並固定於晶片上,改變傳統只能操作小分子DNA及複雜的蛋白修飾晶片表面來達到固定的效果。實驗晶片主要利用微機電系統技術(Micro-Electro-Mechanical-System, MEMS)製作雙層結構於晶片上(包含金電極層與SU- 8微流道層),搭配電滲流操作系統與螢光顯微鏡設備作為實驗平台。實驗主要分成三個部份來探討:第一部份是利用DNA本身呈親水性的特性,搭配不同親疏水性的晶片表面,達到較佳的固定DNA環境;第二部份是最佳電壓測試,測試電壓範圍為從0 V開始直到DNA被拉斷為止,電流保持1 mA,以得到拉伸極限電壓;第三部分是拉伸DNA在微流道中,搭配第一與第二部份測試出的拉伸環境進行實驗。實驗結果顯示,以丙酮清洗的晶片最能表現SU-8與玻璃晶片固定DNA的能力,而於單一微流道中施以20 V可拉伸DNA至230 μm;於多重微流道中,DNA會沿著流道拉伸100 μm。由本研究證明利用電滲流拉伸並固定在疏水性的晶片表面,可有效增加拉伸的長度並應用於大型生物分子的操作。
This study designs two types of DNA stretching biochips. One type is single channel microfluidic chip and the other one is microfluidic chip of multiple channels. DNA can be successfully stretched and immobilized on the surface of proposed microfluidic chips. The chip system is fabricated using Micro-Electro-Mechanical-Systems (MEMS) technology, and DNA is stretched utilizing mechanism of Electro-Osmotic Fluid (EOF). The chips were designed by two sides electrodes, between which the gap is 10 mm, which were located under the microchannel to drive EOF and increase the immobilize potential of biochip.The experiment includes three parts: first, the best voltage was determined to stretch DNA. The initial applied voltage is 5 V, and then increase voltage value until DNA break. Second, stretching DNA on the chip surface modified with different hydrophilic materials. Third, stretch DNA on single microfluidic channel chip and multiple channels. The results indicate that the best environment to stretch and immobilize DNA is that use 20 V to drive EOF with the chip washed by Acetone. The maximum stretching length on a single microchannel chip is 230 μm and that on microfluidic chip of multiple channels is 100 μm. The research successfully designed two microfabricated fluidic bio-chips for DNA stretching and immobilizing
[1] 陳健銘,生物晶片(Bio-chip)專題研究,工研院電子工業研究所,1999.
[2] L. J. Kricka, “Microchip, microarrays, biochipsand nanochips: personal laboratories for the 21st century,” Clinica Chimica Acta, 307, pp. 219-223, 2001.
[3] N. Gottschlich, C. T. Culbertson, T. E. McKnight, S. C. Jacobson, and J. M. Ramsey, “Integrate microchip-device for the digestion, separation and postcolumn labeling of proteins and peptides,” Journal of Chromatography B, 745, pp. 239-243, 2000.
[4] A. Ahmed, C. Bonner, and T. A. Desai, “Bioadhesive microdevices for drug delivery: a feasibility study,” Biomedical Microdevices, 3, pp. 89-96, 2001.
[5] Y. C. Lin, M. Y. Huang, K. C. Young, T. T. Chang, and C. Y. Wu, “A rapid micro-polymerase chain reaction system for hepatitis C virus amplification,” Sensors and Actuators B: Chemical, 71, pp. 2-8, 2000.
[6] P. T. Baud, L. Lauer, and W. Knoll. “PDMS device for patterned application of microfluids to neuronal cells arranged by microcontact printing,” Biosensors & Bioelectronics, 17, pp. 87-93, 2002.
[7] S. A. Makohliso, D. Le’onard, L. Giovangrandi, H. J. Mathieu, M. Ilegems, and P. Aebischer, “Surface characterization of a biochip prototype for cell-based biosensor applications,” Langmuir, 15, pp. 2940-2946, 1999.
[8] V. Benoit, A. Steel, M. Torres, Y. Y. Yu, H. Yang, and J. Cooper, “Evaluation of three-dimensional microchannel glass biochips for multiplexed nucleic acid fluorescence hybridization assays,” Analytical Chemistry, 73, pp. 2412-2420, 2001.
[9] J. C. Venter, M. D. Adams, E. W. Myers, P. W. Li, and R. J. Mural , “The sequence of the human genome,” Science, 291, pp. 1304-1351, 2001.
[10] The International Schizophrenia Consortium, “Rare chromosomal deletions and duplications increase risk of schizophrenia,” Nature letters, 455, pp. 237-241, 2008.
[11] R. Fossdal, E. Sigurdsson, T. Sigmundsson, J. E. B. Voskamp, and T. Hansen, “Large recurrent microdeletions associated with schizophrenia,” Nature letters, 455, pp. 233-237, 2008.
[12] International Human Genome Consortium, “Initial sequencing and analysis of the human genome”, Nature, 409, pp. 860-921, 2001.
[13] T. Walsh, J. M. McClellan, S. E. McCarthy, A. M. Addington, and S. B. Pierce, “Rare structural variants disrupt multiple genes in nero developmental pathways in schizophrenia,” Science, 320, pp. 539-543, 2008.
[14] Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Optics Letters, 11, pp. 288-290, 1986.
[15] R. G. Larson, T. T Perkins, D. E. Smith, and S. Chu, “Hydrodynamics of a DNA molecule in a flow field,” Physical Review E, 55, pp. 1794-1797, 1997.
[16] G. J. L. Wuite, R. J. Davenport, A. Rappaport, and C. Bustamante, “An integrated laser trap / flow control video microscope for the study of single biomolecules,” Biophysical Journal, 79, pp. 1155-1167, 2000.
[17] R. J. Davenport, G. J. L. Wuite, R. Landick, and C. Bustamante, “Single-molecule study of transcriptional pausing and arrest by e. coli RNA polymerase,” Science, 287, pp. 2497-2500, 2000.
[18] J. W. Jorgenson, and K. D. Lukacs, “Zone electrophoresis in open-tubular glass capillaries,” Analytical Chemistry, 53, pp. 1298-1302, 1981.
[19] V. Namasivayam, R. G. Larson, D. T. Burke, and M. A. Burns, “Electrostretching DNA molecules using polymer- enhanced media within microfabricated devices,” Analytical Chemistry, 74, pp. 3378-3385, 2002.
[20] M. Washizu, O. Kurosawa, I. Arai, S. Suzuki, and N. Shimamoto,“Applications of electrostatic stretch and positioning of DNA,” IEEE Transactions on Industry Applications, 31, pp. 447-456, 1995.
[21] Kurosawa, K. Okabe, and M. Washizu, “DNA analysis based on physical manipulation,” Proceedings of the Thirteenth Annual International Conference on Micro Electra Mechanical Systems (MEMS2000), pp. 311-316, 2000.
[22] F. Sean, and H. W. Blanch, “Electrokinetic stretching of tethered DNA,” Biophysical Journal, 85, pp. 2539-2546, 2003.
[23] P. S. Doyle, “Electrophoretic stretching of DNA molecules using microscale T junctions,” Applied Physics Letters, 90, pp. 224103-224105, 2007.
[24] T. T. Perkins, D. E. Smith, and S. Chu, “Single polymer dynamics in an elongational flow,” Science, 276, pp. 2016-2021, 1997.
[25] D. E. Smith, and S. Chu, “Response of flexible polymers to a sudden elongational flow,” Science, 281, pp. 1335-1340, 1998.
[26] D. P. S. Oyle, and B. Ladoux, “Stretching tethered DNA chains in shear flow,” Europhysics Letters, 52, pp. 511-517, 2000.
[27] J. O. Tegenfeldt, C. Prinz, H. Cao, S. Chou, and W. W. Reisner, “The dynamics of genomic-length DNA molecules in 100-nm channels,” Biophysics, 101, pp. 10979-10983, 2004.
[28] K. Jo, D. M. Dhingra, T. Odijk, J. J. D. Pablo, and M. D. Graham, “A single-molecule barcoding system using nanoslits for DNA analysis,” Biophysics, 104, pp. 2673-2678, 2007.
[29] L. Guo, X. Cheng, and C. F. Chou, “Fabrication of size-controllable nanofluidic channels by nanoimprinting and its application for DNA stretching,” Nano Letters, 4-1, pp. 69-73, 2004.
[30] L. H. Thamdrup, A. Klukowska, and A. Kristensen, “Stretching DNA in polymer nanochannels fabricated by thermal imprint in PMMA,” Nanotechnology, 19, pp. 125301-125306, 2008.
[31] H. R. J. Unter, “Zeta potential in colloid science: principles and applications,” Academic Press, New York, 1981.
[32] C. H. Mastrangelo, and W. C. Tang, “Semiconductor sensor technology,” Semiconducotr Sensors, Wiley, New York, 1994.
[33] L. S. Fan, Y. C. Tai, and R. S. Muller, “IC-processed electrostatic micromotors,” International Electron Devices Meeting (IEDM), 666, 1988.
[34] K. Seiler, D. J. Harrison, and A. Manz, “Planar chips technology for miniaturization and integration of separation techniques into monitoring systems,” Journal of Chromatography, 593, pp. 253-258, 1992.
[35] M. Beier, and J. D. Hoheisel, “Versatile derivatisation of solid support media for covalent bonding on DNA-Microchips,” Nucleic Acids Research, 27, pp. 1970-1977, 1999.
[36] Z. Guo, A. J. Guilfoyle, A. J. Thiel, R. Wang, and L. M. Smith, “Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotide arrays on glass supports,” Nucleic Acids Research, 22, pp. 5456-5465, 1994.
[37] B. Joos, H. Kuster, and R. Cone, “Covalent attachment of hybridizable oligonucleotides to glass supports,” Analytical Biochemistry, 247, pp. 96-101, 1997.
[38] Y. H. Rogers, P. J. Baucom, Z. J. Huang, V. Bogdanov, and S. Anderson, “Immobilization of oligonucleotides onto a glass support via disulfide bonds: a method for preparation of DNA microarrays,” Analytical Biochemistry, 266, pp. 23-30, 1999.
[39] M. A. Podyminogin, E. A. Lukhtanov, and M. W. Reed, “Attachment of benzaldehyde-modified oligodeoxynucleotide probes to semicarbazide-coated glass,” Nucleic Acids Research, 29, pp. 5090-5098, 2001.
[40] A. Kumar, O. Larsson, D. Parodi, Z. Liang, “Silanized nucleic acids: a general platform for DNA immobilization,” Nucleic Acids Research, 28, pp. e71-i-e71-vi, 2001.
[41] L. A. Chrisey, G. U. Lee, and C. E. O’Ferrall, “Covalent attachment of synthetic DNA to self-assembled monolayer films,” Nucleic Acids Research, 24, pp. 3031-3039, 1996.
[42] L. A. Chrisey, C. E. O’Ferrall, B. J. Spargo, C. S. Dulcey, and J. M. Calvert, “Fabrication of patterned DNA surfaces,” Nucleic Acids Research, 24, pp. 3040-3047, 1996.
[43] T. Strother, W. Cai, X. Zhao, R. J. Hamers, and L. M. Smith, “Synthesis and characterization of DNA-modified silicon (111) surfaces,” Journal of the American Chemical Society, 122, pp. 1205-1209, 2000.
[44] T. Strother, R. J. Hamers, and L. M. Smith, “Covalent attachment of oligodeoxyribonucleotides to amine-modified Si (001) surfaces,” Nucleic Acids Research, 28, pp. 3535-3541, 2000.
[45] A. Csaki, R. Moller, W. Straube, J. M. Kohler, and W. Fritzsche, “DNA monolayer on gold substrates characterized by nanoparticle labeling and scanning force microscopy,” Nucleic Acids Research, 29, pp. e81-e81-5, 2001.
[46] A. B. Steel, R. L. Levicky, T. M. Herne, and M. J. Tarlov, “Immobilization of nucleic acids at solid surfaces: effect of oligonucleotide length of layer assembly,” Biophysical Journal, 79, pp. 975-981, 2000.
[47] J. B. Lamture, K. L. Beattie, B. E. Burke, M. D. Eggers, and D. J. Ehrlich, “Direct detection of nucleic acid hybridization on the surface of a charge coupled device,” Nucleic Acids Research, 22, pp. 2121-2125, 1994.
[48] R. Marie, S. Schmid, A. Johansson, L. Ejsing, and M. Dufva, “Immobilisation of DNA to polymerised SU-8 photoresist,” Biosensors and Bioelectronics, 21, pp. 1327-1332, 2006.
[49] W. Wang, L. Zhao, F. Zhou, J. J. Zhu, and J. R. Zhang, “Electroosmotic flow-switchable poly(dimethlysilozane) microfludic channel modified with cysteine based on gold nanoparticles,” Talanta, 73, pp. 534-539, 2007.
[50] GCC LaserPro Laser Engraver, Cutting Engraving System, http://www.laserproi.com/en/engr_prod_model_detail.php?ID=English_040909014546, GCC, 2003.
[51] Beer-Lambert Law-Wikipedia, The Free Encyclopedia, http://en.wikipedia.org/wiki/Beer-Lambert_law, 2007.
[52] V. R. Dukkipati, J. H. Kim, S. W. Pang, R. G. Larson, “Protein-assisted stretching and immobilization of DNA molecule in a microchannel,” Nano Letters, 6, pp. 2499-2504, 2006