| 研究生: |
謝育玟 Hsieh, Yuh-Wen |
|---|---|
| 論文名稱: |
計量值模糊管制圖之建構方法 On the Construction of Fuzzy Control Charts for Variables |
| 指導教授: |
呂金河
Leu, Ching-Ho 潘浙楠 Pan, Jeh-Nan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 統計學系 Department of Statistics |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 45 |
| 中文關鍵詞: | 非對稱型三角模糊數 、計量值模糊管制圖 、對稱型三角模糊數 、作業特性曲線 |
| 外文關鍵詞: | OC curves, STFN, Fuzzy control charts for variables, ATFN |
| 相關次數: | 點閱:72 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對於從常態母體中量測的觀察值為不確定的模糊數時,本篇論文提出模糊平均數與全距及模糊平均數與標準差的計量值模糊管制圖的建構過程。而產生這種量測值的模糊現象是用隸屬度函數來表達,其隸屬度函數包含對稱型三角模糊數與非對稱型三角模糊數。進一步,我們比較對稱型與非對稱型三角模糊數的作業特性曲線,並討論它們之間的關係。最後,當製程產生偏移時,比較這兩種不同模糊數對管制圖偵測能力的差別。再舉一個製造汽車引擎的活塞環實例來說明如何使用這兩個計量值模糊管制圖。
Construction of the fuzzy control charts for variables, including fuzzy xbar-R charts and fuzzy xbar-S charts, is proposed in this thesis which the measured observations from the normal population are fuzzy numbers. The vague phenomenon of the measurement value is expressed by the membership functions, including symmetric triangular fuzzy number (STFN) and asymmetric triangular fuzzy number (ATFN). Furthermore, we compare the operating characteristic (OC) curves between STFN and ATFN, and their relationship is discussed. Finally, the detection capability of the different degrees of fuzziness is provided in the shifting process. A practically example for the manufacturing piston rings to demonstrate the use of these fuzzy control charts for variables is given.
[1] Buckley, J.J. (1985). Fuzzy hierarchical analysis. Fuzzy Sets and Systems, 17, 233-247.
[2] Cheng, C.B. (2005). Fuzzy process control: construction of control charts with fuzzy numbers. Fuzzy Sets and Systems, 154, 287-303.
[3] Grzegorzewski, P. (2000). Testing statistical hypotheses with vague data. Fuzzy Sets and Systems, 112, 501-510.
[4] Gulbay, M., Kahraman, C. and Ruan, D. (2004). alpha-cut fuzzy control charts for linguistic data. International Journal of Intelligent Systems, 19, 1173-1195.
[5] Kanagawa, A., Tamaki, F. and Ohta, H. (1993). Control charts for process average and variability based on linguistic data. International Journal of Production Research, 31(4), 913-922.
[6] Kaufmann, A. and Gupta, M.M. (1988). Fuzzy Mathematical Models in Engineering and Management Science. New York: North-Holland.
[7] Klir, G.J. and Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic: Theory and Applications. Upper Saddle River, N.J.: Prentice Hall PTR.
[8] Kruse, R. and Meyer, K.D. (1987). Statistics with Vague Data. Dordreth: D. Reidel.
[9] Kwakernaak, H. (1978). Fuzzy random variables. Information Science, 15, 1-15.
[10] Marcucci, M. (1985). Monitoring multinomial processes. Journal of Quality Technology, 17(2), 86-91.
[11] Montgomery, D.C. (2001). Introduction to Statistical Quality Control. New York: John Wiley & Sons, Inc., 4th Ed.
[12] Raz, T. and Wang, J.H. (1990). Probabilistic and membership approaches in the construction of control charts for linguistic data. Production Planning & Control, 1(3), 147-157.
[13] Taleb, H. and Limam, M. (2002). On fuzzy and probabilistic control charts. International Journal of Production Research, 40(12), 2849-2863.
[14] Wang, J.H. and Raz, T. (1990). On the construction of control charts using linguistic variables. International Journal of Production Research, 28(3), 477-487.
[15] Zadeh, L.A. (1968). Probability measures of fuzzy enents. Journal of Mathematical Analysis and Applications, 23, 421-427.