簡易檢索 / 詳目顯示

研究生: 陳冠尊
Chen, Kuan-tsun
論文名稱: 氧化銪薄膜光特性之研究
Study of Optical Properties on Eu2O3 Thin Films Prepared by Magnetron Sputtering
指導教授: 許進恭
Sheu, Jinn-kong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 125
中文關鍵詞: 氧化銪射頻磁控濺鍍
外文關鍵詞: RF-magnetron sputtering, Eu2O3
相關次數: 點閱:55下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以射頻磁控濺鍍系統沉積氧化銪(Eu2O3)材料於三氧化二鋁(sapphire)基板上,形成氧化銪薄膜,並在氮氣環境下進行不同溫度熱處理,探討熱處理溫度對氧化銪薄膜光特性之影響。另外,改變濺鍍製程壓力,探討濺鍍製程壓力對氧化銪薄膜光特性之影響。
    由實驗結果顯示,使用射頻磁控濺鍍沉積氧化銪薄膜之沉積速率非常緩慢,在濺鍍功率100W情況下,平均鍍率為20 A/min。使用325nm氦-鎘雷射激發氧化銪薄膜須經1200℃熱處理才有較佳紅光發光強度,其中以10m torr製程壓力所沉積之薄膜發光強度最強,所得放射光譜有595nm(5D0→7F1)、616nm與624nm(5D0→7F2)。利用螢光分光光譜儀分析螢光薄膜激發與放射光譜,得知氧化銪螢光薄膜並沒有產生f-f內層電子軌域躍遷,而325nm以上之波長皆無法激發螢光薄膜產生紅光放射。

    In this study, Eu2O3 thin films were deposited on sapphire substrates by RF-magnetron sputtering system and annealed under nitrogen atmosphere at different temperatures to change their optical properties. We also studied the effects of different chamber pressures during deposition on optical properties of the Eu2O3 films.
    Experimental results indicated that the deposition rate of Eu2O3 thin films using RF-magnetron sputtering system under 100 watt was very slow with average deposition rate of around 20 A/min. Under excitation (325nm He-Cd laser), red light emission could be observed from the Eu2O3 thin films with thermal annealing temperature at 1200°C, especially for the 10m torr-deposited films. The red emission band included three peaks, that is 595nm (5D0→7F1), 616nm and 624nm (5D0→7F2). According to the analysis of fluorescence spectrophotometer, one can not observe any emission or absorption peaks from f-f transition states. In addition, no red light emission was detected by exciting sources with wavelengths longer than 325nm.

    中文摘要 I 英文摘要 II 致謝 IV 目錄 VI 表目錄 XI 圖目錄 XII 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 3 第二章 理論基礎與文獻回顧 4 2-1螢光材料簡介 4 2-2螢光材料之分類 6 2-2-1 螢光材料之材料特性分類 6 2-2-2 螢光材料之組成分類 7 2-2-3 螢光材料之發光特性分類 7 2-3螢光材料發光原理與機制 10 2-3-1 螢光材料的發光機制 10 2-3-2 激發源種類與應用 12 2-3-3 螢光材料激發與吸收 13 2-3-4 螢光放射與非輻射轉移 13 2-4 螢光材料之組成與設計 18 2-5 影響螢光材料發光效率之因素 19 2-5-1 主體晶格之效應 19 2-5-2 濃度淬滅效應(concentration quenching) 20 2-5-3 熱淬滅效應(thermal quenching) 21 2-5-4 毒劑效應(poisoning) 21 2-6 稀土離子之特性 21 2-6-1 稀土離子之電子結構 21 2-6-2 稀土離子之光譜項 23 2-6-3 稀土離子之發光特性 26 2-6-4 三價銪離子之光譜特性 29 2-7 氧化銪薄膜實驗原理 31 2-7-1 電漿原理 31 2-7-2 濺鍍原理 33 2-7-3 薄膜沉積原理 35 第三章 薄膜製程方法與步驟 39 3-1 Eu2O3薄膜製程 39 3-1-1 基板清洗 41 3-1-2 濺鍍製程 41 3-1-3 熱處理製程 43 3-2 量測與分析儀器介紹 44 3-2-1 膜厚量測 45 3-2-2 光激發螢光光譜量測 45 3-2-3 穿透量測 46 3-2-4 X光繞射儀分析量測 46 3-2-5 掃描式電子顯微鏡(SEM)與原子力顯微鏡(AFM)量測 47 3-2-6 能量分散式X光分析儀(EDX)量測分析 48 第四章 結果與討論 49 4-1 濺鍍功率對Eu2O3薄膜之影響 52 4-1-1 濺鍍功率與Eu2O3薄膜沉積鍍率之關係 52 4-1-2 濺鍍功率與Eu2O3薄膜光特性之關係 53 4-2 熱處理溫度對Eu2O3薄膜特性之影響 55 4-2-1 熱處理溫度對Eu2O3薄膜發光特性之影響 55 4-2-2 熱處理溫度對Eu2O3薄膜結構特性之影響 57 4-2-3 熱處理溫度對Eu2O3薄膜表面型態之影響 59 4-2-4 熱處理溫度對Eu2O3薄膜穿透率之影響 68 4-3 Eu2O3薄膜光致發光光譜分析 69 4-3-1 Eu2O3薄膜光致發光放射光譜分析 69 4-3-2 Eu2O3靶材之激發與放射光譜圖分析 71 4-3-3 Eu2O3螢光薄膜之激發與放射光譜 78 4-4 濺鍍製程壓力對Eu2O3薄膜之影響 85 4-4-1 濺鍍製程壓力對Eu2O3螢光薄膜表面狀態之影響 86 4-4-2 濺鍍製程壓力對Eu2O3薄膜結構之影響 97 4-4-3 濺鍍製程壓力對Eu2O3螢光薄膜光致發光之影響 99 4-4-4 濺鍍製程壓力對Eu2O3螢光薄膜之激發與放射光譜之影響 102 第五章 結論與未來展望 113 5-1 結論 113 5-2 未來展望 114 參考文獻 115 附錄A 118 不同濺鍍製程壓力與熱處理溫度對Eu2O3薄膜發光特性之影響 118 附錄B 122 不同濺鍍製程壓力與熱處理溫度對Eu2O3薄膜穿透率之影響 122

    [1]E. Fred Schubert, “Light-Emitting Diodes”, Cambridge University Press, New York, p353~354, (2006).
    [2]Yasufumi Hayashi et al. “Photoluminescence of Eu-Doped ZnO Phosphors”, Jpn. J. Appl. Phys, Vol. 34, pp1878-1882, (1995).
    [3]V. Ursaki et al. “Photoluminescence of Eu doped ZnO structures”, Proc. of SPIE, Vol. 5822, (2005).
    [4]G. Blasse and B. C. Grabmaier, “Luminescence Materials,” Springer-Verlag, New York , (1994).
    [5]G. F. J. Garlick, “Luminescent materials”, Clarendon Press, Oxford, (1949).
    [6]G. R. Fonda and F. SeitzJohn, “Preparation and Characteristics of Solid Luminescent Materials”, Wiley and Sons, Chapman and Hall, LTD, (1948).
    [7]S. Shionoya, and W. M. Yen, “Phosphor Handbook”, CRC press, p7, (1999).
    [8]H. P. Kallmann and G. M. Spruch, “Luminescence of Organic and Inorganic Materials”, Wiley and Sons, New York, (1962).
    [9]J. E. Yang, “The Application and Investigation of Luminescence Materials in Electronic Industry”, Technical Report of ITRI, Hsinchu, Taiwan, (1992).
    [10]S. C. Tu, “The Structure and Property of Crystal”, Bouhaitang Co. Taiwan, p326, (1987).
    [11]R. C. Ropp, Amersterdam Elsevier, “Luminescence and the solid state”, (1991).
    [12]Dong Wang, Qingrui Yin, Yongxiang Li, Minquan Wang, J. Luminescence 97,1, (2002).
    [13]李志明,“氧化鋁鍶螢光體之發光特性研究”,國立台北科技大學材料及資源工程系碩士論文,p13-15,民國91年。
    [14]劉如熹、紀喨勝,“紫外光發光二極體用螢光粉介紹”,全華科技,民國92年。
    [15]D. R. Vij, “Luminescence in Solids”, Plenum press, New York, (1998).
    [16]方容川,“固體光譜學”,中國科技大學出版社,民國90年。
    [17]H. Yamamoto, Physical Chemistry-6th, Oxford University Press, Tokyo, (1998).
    [18]江祖成、蔡汝秀、張華山,“稀土元素化學分析”,北京,頁1-16,民國89年。
    [19]歐世傑,“攙雜銪Ca2SiO4螢光體之發光特性研究”,國立臺北科技大學材料及資源工程系碩士論文,民國94年。
    [20]B. Henderson, and G. F. Imbusch, “Optical Spectroscopy of Inorganic Solids”, Clarendon, Oxford, (1989).
    [21]B. DiBartolo, “Energy Transfer Process in Condensed Matter”, Plenum, New York, (1984).
    [22]G. Blasse, “Luminescence of inorganic solids: From isolated centres to concentrated systems”, Prog. Solid State Chem., (1988) .
    [23]蘇鏘,“稀土元素 : 您身邊的大家族”, 北京 : 清華大學 ; 暨南大學 ,民89年。
    [24]H. Yamamoto, “Physical Chemistry”, Oxford University Press, Tokyo, (1998).
    [25]Michael Gaft, Renata Reisfeld, Gerard Panczer, “Modern Luminescence Spectroscopy of Minerals and Materials”, Springer-Verlag, p145, (2005).
    [26]B. Chapman , “Glow Discharge Processes”, John Wiley and Sons, New York, (1980).
    [27]S. M. Rossnagel et al., “Handbook of Plasma Processing Technology”, Noyes Publications, Park Ridge, New Jersey, U.S.A., (1982).
    [28]張勁燕,“半導體製程設備”,五南,民國90年。
    [29]D. S. Rickerby and A. Matthews, “Advanced Surface Coatings: A Handbook of Surface Engineering”, Chapman and Hall, New York, p 92-100, (1991).
    [30]K. Wasa, S. Hayakawa, “Handbook of sputter deposition technology”, Noyes publication, p71, (1992).
    [31]B. Lewis and J. C. Anderson, “Nucleation and growth of thin films”, New York: Academic Press, (1978).
    [32]J. A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings” , J. Vac. Sci. Technol., vol. 11, p666-698, (1974).
    [33]謝振剛,“氧化鋅鋁透明導電膜光、電特性之研究”,國立中央大學光電科學與工程研究所碩士論文,民國94年。
    [34]徐國偉,“氧化鋅鎵透明導電膜之光電特性與其在氮化鎵上歐姆接觸特性之研究”,國立成功大學光電科學與工程研究所碩士論文,民國95年。
    [35]M. Hilert, Acta Metall, 13, 227, (1965).
    [36]B. R. Judd, “Optical Absorption Intensities of Rare-Earth Ions”, Phys. Rev. 127, 750, (1962).
    [37]G. S. Ofelt, “Intensities of Crystal Spectra of Rare-Earth Ions”, J. Chem. Phys. 37, 511, (1962).
    [38]S. Shionoya and W. M. Yen, “Phosphor Handbook”, CRC press, p177-200, (1999).
    [39]R. N. Bhargava, D. Gallagher, Phys. Rev. Lett., 72, 416, (1994).
    [40]E. T. Goldburt, R. N. Bhargava, J. Lumin., 72-74, 190, (1997).

    下載圖示 校內:2010-09-10公開
    校外:2012-09-10公開
    QR CODE