簡易檢索 / 詳目顯示

研究生: 陳奕誠
Chen, Yi-Cheng
論文名稱: 環圓周尖銳凹槽C2700黃銅圓管在循環彎曲負載下行為之實驗研究
Experimental Study of the Behavior of Circumferential Sharp-Notched C2700 Brass Tubes under Cyclic Bending
指導教授: 潘文峰
Pan, Wen-Fung
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 67
中文關鍵詞: C2700黃銅圓管環圓周尖銳凹槽不同凹槽深度循環彎曲彎矩曲率橢圓化循環至損壞圈數
外文關鍵詞: C2700 Brass Tubes, Circumferential Sharp-Notched, Different Notch Depths, Cyclic Bending, Moment, Curvature, Ovalization, Number of Cycles Needed to Initiate Failure
相關次數: 點閱:75下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要是研究不同凹槽深度的環圓周尖銳凹槽C2700黃銅圓管在對稱曲率循環彎曲負載下的力學行為以及失效損壞,其中不同凹槽深度分別為: 0.2、0.4、0.6、0.8與1.0 mm,圓管的壁厚皆為1.5 mm,透過彎管實驗機進行曲率控制循環彎曲至失效損壞的實驗,並根據實驗收集到的數據,整理並統整出彎矩-曲率、橢圓化-曲率與控制曲率-循環至損壞圈數的關係圖。
    從實驗彎矩-曲率關係中發現,從第一圈開始,該關係即呈現一個穩定迴圈的狀態,而凹槽深度越大時,管壁就越薄,彎曲到指定的曲率就不需要較大的彎矩。從實驗橢圓化-曲率的關係中發現,曲線呈現對稱、棘齒與增加的趨勢,而在曲率的峰值處會產生較大的橢圓化值。此外,凹槽深度越大時,橢圓化增加就越快,反之亦然。從實驗控制曲率-循環至損壞圈數的關係中發現,當控制曲率越大或凹槽深度越大時,循環至損壞的圈數就越少。若將控制曲率和循環至損壞圈數之間的關係繪製於雙對數座標中,則五種不同凹槽深度會對應出五條幾乎平行的直線。最後,本研究使用2010年Lee提出的理論方程式來描述環圓周尖銳凹槽C2700黃銅圓管在對稱曲率循環彎曲負載下的控制曲率和循環至損壞圈數關係,並經與實驗數據比對後發現,該理論能夠合理描述實驗結果。

    The study investigates the mechanical behavior and buckling failure of circumferential sharp-notched C2700 brass tubes with five different notch depths subjected to cyclic bending. The different notch depths are 0.2, 0.4, 0.6, 0.8 and 1.0 mm, with tube thickness of 1.5 mm. Using the bending test machine, experiments were conducted to control curvature cyclic bending until failure, and data collected were organized to establish relationships between moment-curvature, ovalization-curvature, and controlled curvature-the number of cycles needed to initiate failure.
    From the experimental moment-curvature relationship, a stable loop was observed from the first cycle, with thinner tube thickness requiring less moment to bend to the specified curvature, especially for larger notched depths. The ovalization-curvature relationship exhibited symmetrical, serrated, and increasing trends, with larger notched depths leading to faster ovalization increase. Additionally, in the controlled curvature-the number of cycles needed to initiate failure relationship, higher controlled curvature or larger notched depths resulted in fewer number of cycles needed to initiate failure. When plotted on a double logarithmic coordinate system, the five different notched depths corresponded to nearly parallel lines. Finally, this study uses the theoretical equations proposed by Lee in 2010 to describe the relationship between control curvature and number of cycles needed to initiate failure for circumferential sharp-notched C2700 brass tubes under cyclic bending. Comparison with experimental data revealed that the theory reasonably describes the experimental results.

    摘要 i 誌謝 xiii 目錄 xiv 表目錄 xvi 圖目錄 xvii 符號說明 xix 第一章 緒論 1 1-1 研究動機 1 1-2 文獻回顧 1 1-3 研究目的 6 第二章 實驗設備 7 2-1彎管實驗機 7 2-2油壓伺服控制系統 11 2-3電腦監控系統 18 2-4檢測儀器 20 第三章 實驗方法與原理 24 3-1實驗的材料與規格 24 3-2實驗方法與原理 26 3-3實驗操作程序 28 3-4實驗數據整理 29 第四章 實驗結果與理論分析 33 4-1彎矩(M)-曲率(κ)之關係 33 4-2橢圓化(∆D/Do)-曲率(κ)之關係 36 4-3控制曲率(κc/κo)-循環至損壞圈數(Nf)之關係 39 4-4理論分析 41 第五章 結論 43 參考文獻 44

    [1] P. K. Shaw and S. Kyriakides, "Inelastic analysis of thin-walled tubes under cyclic bending", International Journal of Solids and Structures, Vol. 21, No. 11, pp. 1073-1100 (1985).
    [2] S. Kyriakides and P. K. Shaw, "Inelastic buckling of tubes under cyclic loads", Journal of Pressure Vessel Technology, Vol. 109, No. 2, pp. 169-178 (1987).
    [3] W. F. Pan, T. R. Wang and C. M. Hsu, "A curvature-ovalization measurement apparatus for circular tubes under cyclic bending", Experimental Mechanics, Vol. 38, No. 2, pp. 99-102 (1998).
    [4] W. F. Pan and Y. S. Her, "Viscoplastic collapse of thin-walled tubes under cyclic
    bending", ASME Journal of Engineering Materials and Technology, Vol. 120, No. 4, pp. 287-290 (1998).
    [5] K. L. Lee, W. F. Pan and J. N. Kuo, "The influence of the diameter-to-thickness ratio on the stability of circular tubes under cyclic bending", International Journal of Solids and Structures, Vol. 38, No. 14, pp. 2401-2413 (2001).
    [6] W. F. Pan and K. L. Lee, "The effect of mean curvature on the response and collapse of thin-walled tubes under cyclic bending", JSME International Journal, Series A, Vol. 45, No. 2, pp. 309-318 (2002).
    [7] K. L. Lee, W. F. Pan, and C. M. Hsu, "Experimental and theoretical evaluations of the effect between diameter-to-thickness ratio and curvature-rate on the stability of circular tubes under cyclic bending", JSME Int. Journal, Ser. A, Vol. 47, No. 2, pp. 212-222 (2004).
    [8] K. H. Chang, C. M. Hsu, S. R. Sheu and W. F. Pan, "Viscoplastic response and collapse of 316L stainless steel under cyclic bending", Steel and Composite Structures, Vol. 5, No. 5, pp. 359-374 (2005).
    [9] K. H. Chang, W. F. Pan and K. L. Lee, "Mean moment effect on circular thin-walled tubes under cyclic bending", Structural Engineering and Mechanics, Vol. 28, No. 5, pp. 495-514 (2008).
    [10] E. Corona and S. Kyriakides, "An experimental investigation of the degradation and buckling of circular tubes under cyclic bending and external pressure", Thin-Walled Structures, Vol. 12, No. 3, pp. 229-263 (1991).
    [11] K. H. Chang and W. F. Pan, "Buckling life estimation of circular tubes under cyclic bending", International Journal of Solids and Structures, Vol. 46, No. 2, pp. 254-270 (2009).
    [12] K. L. Lee, C. Y. Hung and W. F. Pan, "Variation of ovalization for sharp-notched
    circular tubes under cyclic bending", Journal of Mechanics, Vol. 26, No. 3, pp. 403- 411 (2010).
    [13] K. L. Lee, C. M. Hsu and W. F. Pan, "The influence of diameter-to-thickness ratios on the response and collapse of sharp-notched circular tubes under cyclic bending", Journal of Mechanics, Vol. 28, No. 3, pp. 461-468 (2012).
    [14] K. L. Lee, C. M. Hsu and W. F. Pan, "Viscoplastic collapse of sharp-notched circular tubes under cyclic bending", Acta Mechanics Solida Sinica, Vol. 26, No. 6, pp. 629- 641 (2013).
    [15] K. L. Lee, C. C. Chung and W. F. Pan, "Growing and critical ovalization for sharp-
    notched 6061-T6 aluminum alloy tubes under cyclic bending", Journal of Chinese
    Institute of Engineers, Vol. 39, No. 8, pp. 926-935 (2016).
    [16] C. C. Chung, K. L. Lee and W. F. Pan, "Collapse of sharp-notched 6061-T6 aluminum alloy tubes under cyclic bending", International Journal of Structural Stability and Dynamics, Vol. 16, No. 7, 1550035 [24 pages] (2016).
    [17] K. L. Lee, K. H. Chang and W. F. Pan, "Effect of notch depth and direction on stability of local sharp-notched circular tubes subjected to cyclic bending", International Journal of Structural Stability and Dynamics, Vol. 18, No. 7, 1850090 [23 pages] (2018).
    [18] K. L. Lee, M. L. Weng and W. F. Pan, "On the failure of round-hole tubes under cyclic bending", Journal of Chinese Society of Mechanical Engineering, Vol. 40, No. 6, pp. 663-673 (2019).
    [19] K. L. Lee, Y. C. Tsai and W. F. Pan, "Mean curvature effect on the response and failure of round-hole tubes submitted to cyclic bending", Advanced in Mechanical Engineering, Vol. 13, No. 11, pp. 1-14 (2021).
    [20] K. L. Lee, "Mechanical behavior and buckling failure of sharp-notched circular tubes under cyclic bending", Structural Engineering and Mechanics, Vol. 34, No. 3, pp. 367-376 (2010).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE